🚀 轻量级图像描述模型
这是一个基于bert - tiny和vit - small的图像描述模型,仅100mb!它在CPU上运行速度极快,能高效完成图像描述任务。
🚀 快速开始
安装依赖
确保你已经安装了transformers
库,若未安装,可以使用以下命令进行安装:
pip install transformers requests pillow
运行示例代码
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/tiny-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
✨ 主要特性
- 轻量级:模型仅100mb,占用资源少。
- 高效推理:在CPU上也能实现快速推理。
📦 安装指南
使用pip
安装必要的库:
pip install transformers requests pillow
💻 使用示例
基础用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/tiny-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
高级用法
如果你希望进一步提高推理速度,可以将num_beams
参数设置为1,但可能会导致生成质量略有下降:
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=1
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
📚 详细文档
模型信息
属性 |
详情 |
基础模型 |
WinKawaks/vit - small - patch16 - 224、google/bert_uncased_L - 2_H - 128_A - 2 |
模型类型 |
图像描述模型 |
库名称 |
transformers |
标签 |
vit、bert、vision、caption、captioning、image |
📄 许可证
本项目采用Apache 2.0许可证。