🚀 慧慧AI QVQ-72B預覽版量化模型
慧慧AI QVQ-72B預覽版量化模型是基於GPTQ算法的8位量化版本,可有效提升模型的推理效率,適用於圖像文本生成等多種場景。
🚀 快速開始
本模型是 huihui-ai/QVQ-72B-Preview-abliterated 的GPTQ 8位量化版本。這只是GPTQ的量化測試,僅使用了一個數據集:"gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."。如果您需要使用自己的數據集,請聯繫我們:support@huihui.ai。
📦 安裝指南
我們提供了一個工具包,可幫助您更方便地處理各種類型的視覺輸入,包括base64、URL以及交錯的圖像和視頻。您可以使用以下命令進行安裝:
pip install qwen-vl-utils
💻 使用示例
基礎用法
以下是一段代碼示例,展示瞭如何使用 transformers
和 qwen_vl_utils
來使用該聊天模型:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8")
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
],
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
},
{"type": "text", "text": "What value should be filled in the blank space?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
📄 許可證