🚀 慧慧AI QVQ-72B预览版量化模型
慧慧AI QVQ-72B预览版量化模型是基于GPTQ算法的8位量化版本,可有效提升模型的推理效率,适用于图像文本生成等多种场景。
🚀 快速开始
本模型是 huihui-ai/QVQ-72B-Preview-abliterated 的GPTQ 8位量化版本。这只是GPTQ的量化测试,仅使用了一个数据集:"gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."。如果您需要使用自己的数据集,请联系我们:support@huihui.ai。
📦 安装指南
我们提供了一个工具包,可帮助您更方便地处理各种类型的视觉输入,包括base64、URL以及交错的图像和视频。您可以使用以下命令进行安装:
pip install qwen-vl-utils
💻 使用示例
基础用法
以下是一段代码示例,展示了如何使用 transformers
和 qwen_vl_utils
来使用该聊天模型:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("huihui-ai/QVQ-72B-Preview-abliterated-GPTQ-Int8")
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
],
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
},
{"type": "text", "text": "What value should be filled in the blank space?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
📄 许可证