quantized_by: bartowski
pipeline_tag: text-generation
license: apache-2.0
base_model: Qwen/Qwen3-8B
base_model_relation: quantized
QwenによるQwen3-8BのLlamacpp imatrix量子化
量子化にはllama.cppのリリースb5200を使用しています。
オリジナルモデル: https://huggingface.co/Qwen/Qwen3-8B
すべての量子化は、こちらのデータセットを使用してimatrixオプションで作成されました。
LM Studioで実行可能
llama.cppまたは他のllama.cppベースのプロジェクトで直接実行可能
プロンプト形式
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
以下のファイルをダウンロード(ブランチ全体ではなく):
埋め込み/出力ウェイト
これらの量子化の一部(Q3_K_XL、Q4_K_Lなど)は、埋め込みと出力ウェイトが通常のデフォルトではなくQ8_0に量子化された標準的な量子化方法です。
huggingface-cliを使用したダウンロード
ダウンロード手順を表示するにはクリック
まず、huggingface-cliがインストールされていることを確認してください:
pip install -U "huggingface_hub[cli]"
次に、特定のファイルを指定してダウンロードできます:
huggingface-cli download bartowski/Qwen_Qwen3-8B-GGUF --include "Qwen_Qwen3-8B-Q4_K_M.gguf" --local-dir ./
モデルが50GBを超える場合、複数のファイルに分割されています。それらをすべてローカルフォルダにダウンロードするには、次のコマンドを実行します:
huggingface-cli download bartowski/Qwen_Qwen3-8B-GGUF --include "Qwen_Qwen3-8B-Q8_0/*" --local-dir ./
新しいlocal-dir(Qwen_Qwen3-8B-Q8_0)を指定するか、すべてをその場(./)にダウンロードできます。
ARM/AVX情報
以前は、Q4_0_4_4/4_8/8_8をダウンロードし、これらのウェイトはメモリ内でインターリーブされ、ARMおよびAVXマシン上でより多くのデータを一度にロードすることでパフォーマンスを向上させていました。
しかし、現在はウェイトの「オンライン再パッキング」と呼ばれるものがあります。詳細はこのPRにあります。Q4_0を使用し、ハードウェアがウェイトの再パッキングの恩恵を受ける場合、自動的にオンザフライで行われます。
llama.cppビルドb4282以降、Q4_0_X_Xファイルを実行できなくなり、代わりにQ4_0を使用する必要があります。
さらに、このPRのおかげで、IQ4_NLを使用すると、ARM用のウェイトも再パッキングされ、現在は4_4のみですが、わずかに品質が向上します。ロード時間は遅くなる可能性がありますが、全体的な速度向上につながります。
Q4_0_X_X情報を表示するにはクリック(非推奨)
このセクションは、Q4_0とオンライン再パッキングを使用した場合の潜在的な理論的なパフォーマンス向上を示すために保持しています。
AVX2システム(EPYC7702)でのベンチマークを表示するにはクリック
モデル |
サイズ |
パラメータ |
バックエンド |
スレッド |
テスト |
t/s |
% (vs Q4_0) |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp512 |
204.03 ± 1.03 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp1024 |
282.92 ± 0.19 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp2048 |
259.49 ± 0.44 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg128 |
39.12 ± 0.27 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg256 |
39.31 ± 0.69 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg512 |
40.52 ± 0.03 |
100% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp512 |
301.02 ± 1.74 |
147% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp1024 |
287.23 ± 0.20 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp2048 |
262.77 ± 1.81 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg128 |
18.80 ± 0.99 |
48% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg256 |
24.46 ± 3.04 |
83% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg512 |
36.32 ± 3.59 |
90% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp512 |
271.71 ± 3.53 |
133% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp1024 |
279.86 ± 45.63 |
100% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp2048 |
320.77 ± 5.00 |
124% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg128 |
43.51 ± 0.05 |
111% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg256 |
43.35 ± 0.09 |
110% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg512 |
42.60 ± 0.31 |
105% |
Q4_0_8_8は、プロンプト処理に良い向上をもたらし、テキスト生成にもわずかな向上をもたらします。
どのファイルを選ぶべきか?
詳細はこちら
Artefact2によるこちらのチャート付きの素晴らしい説明が提供されています。
最初に、実行できるモデルのサイズを把握する必要があります。これを行うには、RAMおよび/またはVRAMの量を把握する必要があります。
モデルを可能な限り高速に実行したい場合は、GPUのVRAMに全体を収める必要があります。GPUの総VRAMより1-2GB小さい量子化を目指してください。
絶対的な最高品質を求めている場合は、システムRAMとGPUのVRAMを合計し、同様に合計より1-2GB小さい量子化を選択してください。
次に、「I-quant」または「K-quant」のどちらを使用するかを決定する必要があります。
あまり考えたくない場合は、K-quantのいずれかを選択してください。これらは「QX_K_X」形式で、Q5_K_Mのようになります。
さらに詳しく知りたい場合は、この非常に便利な機能チャートを確認できます:
llama.cpp機能マトリックス
基本的に、Q4以下を目指していて、cuBLAS(Nvidia)またはrocBLAS(AMD)を実行している場合は、I-quantを検討する必要があります。これらはIQX_X形式で、IQ3_Mのようになります。これらは新しく、サイズに対してより良いパフォーマンスを提供します。
これらのI-quantはCPU上でも使用できますが、K-quant相当よりも遅くなるため、速度とパフォーマンスのトレードオフを決定する必要があります。
クレジット
imatrixキャリブレーションデータセットの作成に協力してくれたkalomazeとDampfに感謝します。
埋め込み/出力の実験にインスピレーションを与えてくれたZeroWwに感謝します。
私の仕事を支援してくれたLM Studioに感謝します。
私の仕事をサポートしたいですか?私のko-fiページを訪れてください: https://ko-fi.com/bartowski