Jina Reranker V2 Base Multilingual Wiki Tr Rag Prefix
J
Jina Reranker V2 Base Multilingual Wiki Tr Rag Prefix
SMARTICTによって開発
jina-reranker-v2-base-multilingualをベースに微調整したクロスエンコーダモデルで、テキストの再ランキングと意味検索に使用されます。
ダウンロード数 173
リリース時間 : 4/15/2025
モデル概要
これはjina-reranker-v2-base-multilingualをベースに微調整したクロスエンコーダモデルで、テキストペアのマッチングスコアを計算でき、主にテキストの再ランキングと意味検索タスクに使用されます。
モデル特徴
多言語対応
多言語ベースモデルをベースに、複数の言語のテキスト再ランキングをサポートします。
高性能再ランキング
複数の評価データセットで優れた性能を発揮し、特にgooaq開発セットでは0.9386のnDCG@10を達成しました。
長文処理
最大1024トークンのシーケンス長をサポートし、長いテキストの処理に適しています。
モデル能力
テキストペアマッチングスコアリング
意味検索再ランキング
多言語テキスト処理
使用事例
情報検索
質問応答システム再ランキング
質問応答システムの候補回答を再ランキングし、正解のランクを向上させます。
NanoNQデータセットで0.6937の平均精度を達成しました。
文書検索
検索エンジンが返した文書を再ランキングし、関連性を向上させます。
NanoMSMARCOデータセットで0.5847の平均精度を達成しました。
推薦システム
コンテンツ推薦
推薦コンテンツを関連性でランキングし、推薦品質を向上させます。
🚀 jina-reranker-v2-base-multilingual テスト
このモデルは、Cross Encoder をベースにしており、sentence-transformers ライブラリを使用して、jinaai/jina-reranker-v2-base-multilingual から微調整されています。このモデルは、テキストペアのスコアを計算することができ、テキストの再ランキングや意味検索に利用できます。
🚀 クイックスタート
このモデルは、Cross Encoder をベースにした微調整モデルで、sentence-transformers ライブラリを使用して開発されています。テキストペアに対してスコアを計算し、テキストの再ランキングや意味検索などのタスクで役立ちます。
✨ 主な機能
- Cross Encoder アーキテクチャをベースにしており、テキストペアの関連性スコアを効果的に計算できます。
- 事前学習モデルから微調整されており、良好な汎化能力を備えています。
- テキストの再ランキングと意味検索タスクをサポートしています。
📦 インストール
Sentence Transformers ライブラリのインストール
まず、Sentence Transformers ライブラリをインストールする必要があります。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
ライブラリをインストールしたら、モデルをロードして推論を行うことができます。
from sentence_transformers import CrossEncoder
# 🤗 Hub からモデルをダウンロード
model = CrossEncoder("SMARTICT/jina-reranker-v2-base-multilingual-wiki-tr-rag-prefix")
# テキストペアのスコアを取得
pairs = [
['query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?', 'passage: Kumbara, özellikle çocuklara küçük yaşta para biriktirmenin ve tasarrufun önemini anlamalarını sağlamak için eğlenceli ve görsel bir araç sunar. İçine attıkları her kuruşu görerek birikimlerinin artışını gözlemlemeleri, onlarda tasarruf alışkanlığı kazanmalarına yardımcı olur.'],
['query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?', 'passage: Uzay araçlarında yakıt tasarrufu sağlamak için reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yüksek özgül itki motorları kullanılabilir. Ayrıca, ISS dahil bazı uzay araçları, dönme oranlarını kontrol etmek için dönen momentum çarklarından yararlanır.'],
['query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?', 'passage: Kubar, genellikle pipo, bong veya vaporizör kullanılarak içilir. Ayrıca sigara gibi sarılarak da tüketilebilir. Ancak kubar tek başına yanmadığı için, bu şekilde içildiğinde genellikle normal esrar veya tütün ile karıştırılır. Dekarboksile edilmiş kubar ise oral yolla da kullanılabilir.'],
['query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?', 'passage: Taşıma kuvveti, bir cismin havada yukarı doğru kaldırılmasına neden olan kuvvettir. Direnç kuvveti ise cismin hareketini yavaşlatan, ona karşı koyan kuvvettir. Hava taşımacılığında her iki kuvvet de önemlidir. Uçaklar uçabilmek için yeterli taşıma kuvveti üretmelidir. Ancak aynı zamanda direnci minimize etmek için tasarlanırlar çünkü direnç yakıt tüketimini artırır. Kara taşıtlarında ise düşük hızlarda direnç kuvveti ön plandadır. Ancak yüksek hızlarda, örneğin Formula 1 araçlarında, taşıma kuvveti de önemli hale gelir çünkü aracın yol tutuşunu sağlar.'],
['query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?', 'passage: Evet, yazıda da belirtildiği gibi kuvvet makineleri yakıt kullanan ısı makineleri ve doğal enerji kaynaklarını kullanan makinelere ayrılır. Örneğin, araçlarda kullanılan motorlar ısı makineleridir çünkü benzin veya dizel yakıtı kullanarak mekanik enerji üretirler. Rüzgar türbinleri ise rüzgarın kinetik enerjisini elektrik enerjisine dönüştüren doğal enerji kaynaklı kuvvet makineleridir.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
高度な使用法
単一のテキストと他のテキストの類似度に基づいて、それらを並べ替えることもできます。
# 単一のテキストとの類似度に基づいて、異なるテキストを並べ替える
ranks = model.rank(
'query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?',
[
'passage: Kumbara, özellikle çocuklara küçük yaşta para biriktirmenin ve tasarrufun önemini anlamalarını sağlamak için eğlenceli ve görsel bir araç sunar. İçine attıkları her kuruşu görerek birikimlerinin artışını gözlemlemeleri, onlarda tasarruf alışkanlığı kazanmalarına yardımcı olur.',
'passage: Uzay araçlarında yakıt tasarrufu sağlamak için reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yüksek özgül itki motorları kullanılabilir. Ayrıca, ISS dahil bazı uzay araçları, dönme oranlarını kontrol etmek için dönen momentum çarklarından yararlanır.',
'passage: Kubar, genellikle pipo, bong veya vaporizör kullanılarak içilir. Ayrıca sigara gibi sarılarak da tüketilebilir. Ancak kubar tek başına yanmadığı için, bu şekilde içildiğinde genellikle normal esrar veya tütün ile karıştırılır. Dekarboksile edilmiş kubar ise oral yolla da kullanılabilir.',
'passage: Taşıma kuvveti, bir cismin havada yukarı doğru kaldırılmasına neden olan kuvvettir. Direnç kuvveti ise cismin hareketini yavaşlatan, ona karşı koyan kuvvettir. Hava taşımacılığında her iki kuvvet de önemlidir. Uçaklar uçabilmek için yeterli taşıma kuvveti üretmelidir. Ancak aynı zamanda direnci minimize etmek için tasarlanırlar çünkü direnç yakıt tüketimini artırır. Kara taşıtlarında ise düşük hızlarda direnç kuvveti ön plandadır. Ancak yüksek hızlarda, örneğin Formula 1 araçlarında, taşıma kuvveti de önemli hale gelir çünkü aracın yol tutuşunu sağlar.',
'passage: Evet, yazıda da belirtildiği gibi kuvvet makineleri yakıt kullanan ısı makineleri ve doğal enerji kaynaklarını kullanan makinelere ayrılır. Örneğin, araçlarda kullanılan motorlar ısı makineleridir çünkü benzin veya dizel yakıtı kullanarak mekanik enerji üretirler. Rüzgar türbinleri ise rüzgarın kinetik enerjisini elektrik enerjisine dönüştüren doğal enerji kaynaklı kuvvet makineleridir.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 ドキュメント
モデル詳細
モデルの説明
属性 | 詳細 |
---|---|
モデルタイプ | Cross Encoder |
ベースモデル | jinaai/jina-reranker-v2-base-multilingual |
最大シーケンス長 | 1024 トークン |
出力ラベル数 | 1 ラベル |
ライセンス | apache-2.0 |
モデルの出所
- ドキュメント:Sentence Transformers ドキュメント
- ドキュメント:Cross Encoder ドキュメント
- リポジトリ:GitHub の Sentence Transformers
- Hugging Face:Hugging Face の Cross Encoders
評価
指標
Cross Encoder 再ランキング(gooaq-dev
データセット)
- データセット:
gooaq-dev
CrossEncoderRerankingEvaluator
を使用して評価され、パラメータは以下の通りです。{ "at_k": 10, "always_rerank_positives": false }
指標 | 値 |
---|---|
map | 0.9094 (-0.0382) |
mrr@10 | 0.9248 (-0.0228) |
ndcg@10 | 0.9386 (-0.0118) |
Cross Encoder 再ランキング(NanoMSMARCO_R100
, NanoNFCorpus_R100
および NanoNQ_R100
データセット)
- データセット:
NanoMSMARCO_R100
,NanoNFCorpus_R100
およびNanoNQ_R100
CrossEncoderRerankingEvaluator
を使用して評価され、パラメータは以下の通りです。{ "at_k": 10, "always_rerank_positives": true }
指標 | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.5847 (+0.0951) | 0.4027 (+0.1417) | 0.6937 (+0.2741) |
mrr@10 | 0.5880 (+0.1105) | 0.6892 (+0.1894) | 0.7346 (+0.3079) |
ndcg@10 | 0.6644 (+0.1240) | 0.4778 (+0.1527) | 0.7569 (+0.2562) |
Cross Encoder Nano BEIR(NanoBEIR_R100_mean
データセット)
- データセット:
NanoBEIR_R100_mean
CrossEncoderNanoBEIREvaluator
を使用して評価され、パラメータは以下の通りです。{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
指標 | 値 |
---|---|
map | 0.5604 (+0.1703) |
mrr@10 | 0.6706 (+0.2026) |
ndcg@10 | 0.6330 (+0.1776) |
学習詳細
学習データセット
未命名データセット
- サイズ:26,004 個の学習サンプル
- 列:
question
、answer
およびlabel
- 最初の 1000 個のサンプルに基づく近似統計情報:
| | 質問 | 回答 | ラベル |
|------|------|------|------|
| タイプ | 文字列 | 文字列 | 整数 |
| 詳細 |
- 最小:27 文字
- 平均:78.97 文字
- 最大:182 文字
- 最小:44 文字
- 平均:273.24 文字
- 最大:836 文字
- 0:~81.00%
- 1:~19.00%
- サンプル:
| 質問 | 回答 | ラベル |
|------|------|------|
|
query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?
|passage: Kumbara, özellikle çocuklara küçük yaşta para biriktirmenin ve tasarrufun önemini anlamalarını sağlamak için eğlenceli ve görsel bir araç sunar. İçine attıkları her kuruşu görerek birikimlerinin artışını gözlemlemeleri, onlarda tasarruf alışkanlığı kazanmalarına yardımcı olur.
|1
| |query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?
|passage: Uzay araçlarında yakıt tasarrufu sağlamak için reaksiyon kontrol sistemlerine alternatif olarak ark jetleri, iyon iticileri veya Hall etkili iticiler gibi yüksek özgül itki motorları kullanılabilir. Ayrıca, ISS dahil bazı uzay araçları, dönme oranlarını kontrol etmek için dönen momentum çarklarından yararlanır.
|0
| |query: Kumbara tasarruf bilincinin aşılanmasında nasıl bir araçtır?
|passage: Kubar, genellikle pipo, bong veya vaporizör kullanılarak içilir. Ayrıca sigara gibi sarılarak da tüketilebilir. Ancak kubar tek başına yanmadığı için, bu şekilde içildiğinde genellikle normal esrar veya tütün ile karıştırılır. Dekarboksile edilmiş kubar ise oral yolla da kullanılabilir.
|0
| - 損失関数:
BinaryCrossEntropyLoss
、パラメータは以下の通りです。{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
学習ハイパーパラメータ
非デフォルトのハイパーパラメータ
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
すべてのハイパーパラメータ
クリックして展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
学習ログ
エポック | ステップ | 学習損失 | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.9555 (+0.0050) | 0.6801 (+0.1397) | 0.4668 (+0.1417) | 0.7932 (+0.2925) | 0.6467 (+0.1913) |
0.0006 | 1 | 0.2737 | - | - | - | - | - |
0.6150 | 1000 | 0.0997 | - | - | - | - | - |
1.2300 | 2000 | 0.019 | - | - | - | - | - |
1.8450 | 3000 | 0.0202 | - | - | - | - | - |
-1 | -1 | - | 0.9386 (-0.0118) | 0.6644 (+0.1240) | 0.4778 (+0.1527) | 0.7569 (+0.2562) | 0.6330 (+0.1776) |
フレームワークのバージョン
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
📄 ライセンス
このモデルは apache-2.0 ライセンスを使用しています。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98