🚀 videomae-base-finetuned-subset
このモデルは、MCG-NJU/videomae-base を未知のデータセットでファインチューニングしたバージョンです。評価セットでは以下の結果を達成しています。
📚 ドキュメント
トレーニング手順
トレーニングハイパーパラメータ
トレーニング中に以下のハイパーパラメータが使用されました。
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11100
トレーニング結果
トレーニング損失 |
エポック |
ステップ |
検証損失 |
正解率 |
1.638 |
0.01 |
112 |
1.5736 |
0.1567 |
1.5845 |
1.01 |
224 |
1.5841 |
0.2719 |
1.4522 |
2.01 |
336 |
1.6293 |
0.2350 |
1.3111 |
3.01 |
448 |
1.0450 |
0.6037 |
1.2849 |
4.01 |
560 |
1.3186 |
0.4608 |
1.3246 |
5.01 |
672 |
1.1759 |
0.5161 |
1.3801 |
6.01 |
784 |
1.2188 |
0.4608 |
1.3228 |
7.01 |
896 |
0.9895 |
0.6406 |
0.9706 |
8.01 |
1008 |
1.1265 |
0.6129 |
1.2483 |
9.01 |
1120 |
1.2352 |
0.5484 |
0.9394 |
10.01 |
1232 |
1.2345 |
0.4977 |
0.8285 |
11.01 |
1344 |
0.8702 |
0.6682 |
1.1175 |
12.01 |
1456 |
0.9073 |
0.6406 |
1.093 |
13.01 |
1568 |
0.9210 |
0.5576 |
0.8364 |
14.01 |
1680 |
0.9316 |
0.6590 |
0.766 |
15.01 |
1792 |
0.7628 |
0.7742 |
0.7702 |
16.01 |
1904 |
0.8982 |
0.6682 |
0.9184 |
17.01 |
2016 |
1.1010 |
0.6221 |
0.7309 |
18.01 |
2128 |
0.8245 |
0.6866 |
0.9575 |
19.01 |
2240 |
0.9029 |
0.7097 |
0.8233 |
20.01 |
2352 |
1.2445 |
0.5161 |
0.7643 |
21.01 |
2464 |
0.9558 |
0.6498 |
0.6722 |
22.01 |
2576 |
1.1864 |
0.5714 |
0.8441 |
23.01 |
2688 |
0.9690 |
0.7235 |
0.7971 |
24.01 |
2800 |
0.9349 |
0.6774 |
0.8296 |
25.01 |
2912 |
1.4574 |
0.4516 |
0.8613 |
26.01 |
3024 |
0.8688 |
0.7189 |
0.5614 |
27.01 |
3136 |
1.2101 |
0.6083 |
0.6971 |
28.01 |
3248 |
1.3006 |
0.4654 |
0.9642 |
29.01 |
3360 |
0.9573 |
0.6313 |
0.836 |
30.01 |
3472 |
1.1268 |
0.6221 |
0.7166 |
31.01 |
3584 |
1.2384 |
0.5622 |
0.9302 |
32.01 |
3696 |
1.0620 |
0.5991 |
0.7729 |
33.01 |
3808 |
1.3253 |
0.5622 |
0.8005 |
34.01 |
3920 |
1.4979 |
0.4931 |
0.8025 |
35.01 |
4032 |
0.9786 |
0.5668 |
0.881 |
36.01 |
4144 |
0.8477 |
0.6544 |
0.5343 |
37.01 |
4256 |
1.3107 |
0.6544 |
0.5611 |
38.01 |
4368 |
0.9520 |
0.6866 |
0.6824 |
39.01 |
4480 |
0.7909 |
0.7281 |
0.6146 |
40.01 |
4592 |
1.0886 |
0.6175 |
1.0098 |
41.01 |
4704 |
1.0434 |
0.6313 |
0.5555 |
42.01 |
4816 |
0.9603 |
0.6912 |
0.4578 |
43.01 |
4928 |
1.2341 |
0.5945 |
0.5883 |
44.01 |
5040 |
1.2559 |
0.6359 |
0.3579 |
45.01 |
5152 |
1.2459 |
0.5622 |
0.7936 |
46.01 |
5264 |
1.2685 |
0.6083 |
0.4331 |
47.01 |
5376 |
0.9118 |
0.7097 |
0.8989 |
48.01 |
5488 |
1.3406 |
0.5806 |
0.7674 |
49.01 |
5600 |
1.5231 |
0.5484 |
0.8136 |
50.01 |
5712 |
1.2210 |
0.6221 |
0.6583 |
51.01 |
5824 |
0.9262 |
0.7051 |
0.4305 |
52.01 |
5936 |
1.0339 |
0.6959 |
0.7197 |
53.01 |
6048 |
1.1948 |
0.6682 |
0.7143 |
54.01 |
6160 |
1.1851 |
0.6774 |
0.5441 |
55.01 |
6272 |
1.0351 |
0.6636 |
0.6443 |
56.01 |
6384 |
1.0297 |
0.6866 |
0.7747 |
57.01 |
6496 |
1.5174 |
0.5991 |
0.5943 |
58.01 |
6608 |
1.1961 |
0.6452 |
0.5781 |
59.01 |
6720 |
1.2187 |
0.7143 |
0.6913 |
60.01 |
6832 |
1.1590 |
0.6728 |
0.6186 |
61.01 |
6944 |
1.0495 |
0.7235 |
0.5185 |
62.01 |
7056 |
0.9844 |
0.7051 |
0.4077 |
63.01 |
7168 |
1.3194 |
0.6313 |
0.8217 |
64.01 |
7280 |
1.2620 |
0.6636 |
0.5273 |
65.01 |
7392 |
1.0395 |
0.7373 |
0.9002 |
66.01 |
7504 |
1.5225 |
0.5806 |
0.5763 |
67.01 |
7616 |
1.2559 |
0.6406 |
1.0535 |
68.01 |
7728 |
1.2646 |
0.6498 |
1.0064 |
69.01 |
7840 |
1.1533 |
0.6866 |
0.332 |
70.01 |
7952 |
1.0438 |
0.7005 |
0.3978 |
71.01 |
8064 |
1.0248 |
0.7051 |
0.4459 |
72.01 |
8176 |
1.0926 |
0.7465 |
0.511 |
73.01 |
8288 |
1.1233 |
0.7143 |
0.7933 |
74.01 |
8400 |
1.1535 |
0.7189 |
0.3739 |
75.01 |
8512 |
1.3056 |
0.6912 |
0.6976 |
76.01 |
8624 |
1.3159 |
0.6682 |
0.5453 |
77.01 |
8736 |
1.4541 |
0.6359 |
0.2915 |
78.01 |
8848 |
1.2601 |
0.7051 |
0.6552 |
79.01 |
8960 |
1.5338 |
0.6544 |
0.5067 |
80.01 |
9072 |
1.6630 |
0.6037 |
0.5134 |
81.01 |
9184 |
1.4740 |
0.6406 |
0.7271 |
82.01 |
9296 |
1.2171 |
0.7097 |
0.719 |
83.01 |
9408 |
1.3653 |
0.6406 |
0.1955 |
84.01 |
9520 |
1.4696 |
0.6544 |
0.5761 |
85.01 |
9632 |
1.3334 |
0.6636 |
0.7094 |
86.01 |
9744 |
1.2673 |
0.6912 |
0.5186 |
87.01 |
9856 |
1.3147 |
0.6866 |
0.6876 |
88.01 |
9968 |
1.2622 |
0.7051 |
0.4912 |
89.01 |
10080 |
1.3054 |
0.7189 |
0.194 |
90.01 |
10192 |
1.3244 |
0.6959 |
0.6916 |
91.01 |
10304 |
1.1800 |
0.7327 |
0.5735 |
92.01 |
10416 |
1.1056 |
0.7419 |
0.2122 |
93.01 |
10528 |
1.1070 |
0.7281 |
0.1434 |
94.01 |
10640 |
1.1776 |
0.7097 |
0.4681 |
95.01 |
10752 |
1.1505 |
0.7327 |
0.2856 |
96.01 |
10864 |
1.1203 |
0.7235 |
0.6509 |
97.01 |
10976 |
1.1502 |
0.7189 |
0.1881 |
98.01 |
11088 |
1.1474 |
0.7189 |
0.5577 |
99.0 |
11100 |
1.1473 |
0.7189 |
フレームワークバージョン
- Transformers 4.36.2
- Pytorch 1.13.1
- Datasets 2.16.1
- Tokenizers 0.15.0
📄 ライセンス
このモデルは CC BY-NC 4.0 ライセンスの下で提供されています。