đ videomae-base-finetuned-subset
This model is a fine - tuned version of [MCG - NJU/videomae - base](https://huggingface.co/MCG - NJU/videomae - base) on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7700
- Accuracy: 0.6713
đ Quick Start
No specific quick - start content is provided in the original document.
⨠Features
No feature descriptions are provided in the original document.
đĻ Installation
No installation steps are provided in the original document.
đģ Usage Examples
No code examples are provided in the original document.
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11100
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
1.638 |
0.01 |
112 |
1.5736 |
0.1567 |
1.5845 |
1.01 |
224 |
1.5841 |
0.2719 |
1.4522 |
2.01 |
336 |
1.6293 |
0.2350 |
1.3111 |
3.01 |
448 |
1.0450 |
0.6037 |
1.2849 |
4.01 |
560 |
1.3186 |
0.4608 |
1.3246 |
5.01 |
672 |
1.1759 |
0.5161 |
1.3801 |
6.01 |
784 |
1.2188 |
0.4608 |
1.3228 |
7.01 |
896 |
0.9895 |
0.6406 |
0.9706 |
8.01 |
1008 |
1.1265 |
0.6129 |
1.2483 |
9.01 |
1120 |
1.2352 |
0.5484 |
0.9394 |
10.01 |
1232 |
1.2345 |
0.4977 |
0.8285 |
11.01 |
1344 |
0.8702 |
0.6682 |
1.1175 |
12.01 |
1456 |
0.9073 |
0.6406 |
1.093 |
13.01 |
1568 |
0.9210 |
0.5576 |
0.8364 |
14.01 |
1680 |
0.9316 |
0.6590 |
0.766 |
15.01 |
1792 |
0.7628 |
0.7742 |
0.7702 |
16.01 |
1904 |
0.8982 |
0.6682 |
0.9184 |
17.01 |
2016 |
1.1010 |
0.6221 |
0.7309 |
18.01 |
2128 |
0.8245 |
0.6866 |
0.9575 |
19.01 |
2240 |
0.9029 |
0.7097 |
0.8233 |
20.01 |
2352 |
1.2445 |
0.5161 |
0.7643 |
21.01 |
2464 |
0.9558 |
0.6498 |
0.6722 |
22.01 |
2576 |
1.1864 |
0.5714 |
0.8441 |
23.01 |
2688 |
0.9690 |
0.7235 |
0.7971 |
24.01 |
2800 |
0.9349 |
0.6774 |
0.8296 |
25.01 |
2912 |
1.4574 |
0.4516 |
0.8613 |
26.01 |
3024 |
0.8688 |
0.7189 |
0.5614 |
27.01 |
3136 |
1.2101 |
0.6083 |
0.6971 |
28.01 |
3248 |
1.3006 |
0.4654 |
0.9642 |
29.01 |
3360 |
0.9573 |
0.6313 |
0.836 |
30.01 |
3472 |
1.1268 |
0.6221 |
0.7166 |
31.01 |
3584 |
1.2384 |
0.5622 |
0.9302 |
32.01 |
3696 |
1.0620 |
0.5991 |
0.7729 |
33.01 |
3808 |
1.3253 |
0.5622 |
0.8005 |
34.01 |
3920 |
1.4979 |
0.4931 |
0.8025 |
35.01 |
4032 |
0.9786 |
0.5668 |
0.881 |
36.01 |
4144 |
0.8477 |
0.6544 |
0.5343 |
37.01 |
4256 |
1.3107 |
0.6544 |
0.5611 |
38.01 |
4368 |
0.9520 |
0.6866 |
0.6824 |
39.01 |
4480 |
0.7909 |
0.7281 |
0.6146 |
40.01 |
4592 |
1.0886 |
0.6175 |
1.0098 |
41.01 |
4704 |
1.0434 |
0.6313 |
0.5555 |
42.01 |
4816 |
0.9603 |
0.6912 |
0.4578 |
43.01 |
4928 |
1.2341 |
0.5945 |
0.5883 |
44.01 |
5040 |
1.2559 |
0.6359 |
0.3579 |
45.01 |
5152 |
1.2459 |
0.5622 |
0.7936 |
46.01 |
5264 |
1.2685 |
0.6083 |
0.4331 |
47.01 |
5376 |
0.9118 |
0.7097 |
0.8989 |
48.01 |
5488 |
1.3406 |
0.5806 |
0.7674 |
49.01 |
5600 |
1.5231 |
0.5484 |
0.8136 |
50.01 |
5712 |
1.2210 |
0.6221 |
0.6583 |
51.01 |
5824 |
0.9262 |
0.7051 |
0.4305 |
52.01 |
5936 |
1.0339 |
0.6959 |
0.7197 |
53.01 |
6048 |
1.1948 |
0.6682 |
0.7143 |
54.01 |
6160 |
1.1851 |
0.6774 |
0.5441 |
55.01 |
6272 |
1.0351 |
0.6636 |
0.6443 |
56.01 |
6384 |
1.0297 |
0.6866 |
0.7747 |
57.01 |
6496 |
1.5174 |
0.5991 |
0.5943 |
58.01 |
6608 |
1.1961 |
0.6452 |
0.5781 |
59.01 |
6720 |
1.2187 |
0.7143 |
0.6913 |
60.01 |
6832 |
1.1590 |
0.6728 |
0.6186 |
61.01 |
6944 |
1.0495 |
0.7235 |
0.5185 |
62.01 |
7056 |
0.9844 |
0.7051 |
0.4077 |
63.01 |
7168 |
1.3194 |
0.6313 |
0.8217 |
64.01 |
7280 |
1.2620 |
0.6636 |
0.5273 |
65.01 |
7392 |
1.0395 |
0.7373 |
0.9002 |
66.01 |
7504 |
1.5225 |
0.5806 |
0.5763 |
67.01 |
7616 |
1.2559 |
0.6406 |
1.0535 |
68.01 |
7728 |
1.2646 |
0.6498 |
1.0064 |
69.01 |
7840 |
1.1533 |
0.6866 |
0.332 |
70.01 |
7952 |
1.0438 |
0.7005 |
0.3978 |
71.01 |
8064 |
1.0248 |
0.7051 |
0.4459 |
72.01 |
8176 |
1.0926 |
0.7465 |
0.511 |
73.01 |
8288 |
1.1233 |
0.7143 |
0.7933 |
74.01 |
8400 |
1.1535 |
0.7189 |
0.3739 |
75.01 |
8512 |
1.3056 |
0.6912 |
0.6976 |
76.01 |
8624 |
1.3159 |
0.6682 |
0.5453 |
77.01 |
8736 |
1.4541 |
0.6359 |
0.2915 |
78.01 |
8848 |
1.2601 |
0.7051 |
0.6552 |
79.01 |
8960 |
1.5338 |
0.6544 |
0.5067 |
80.01 |
9072 |
1.6630 |
0.6037 |
0.5134 |
81.01 |
9184 |
1.4740 |
0.6406 |
0.7271 |
82.01 |
9296 |
1.2171 |
0.7097 |
0.719 |
83.01 |
9408 |
1.3653 |
0.6406 |
0.1955 |
84.01 |
9520 |
1.4696 |
0.6544 |
0.5761 |
85.01 |
9632 |
1.3334 |
0.6636 |
0.7094 |
86.01 |
9744 |
1.2673 |
0.6912 |
0.5186 |
87.01 |
9856 |
1.3147 |
0.6866 |
0.6876 |
88.01 |
9968 |
1.2622 |
0.7051 |
0.4912 |
89.01 |
10080 |
1.3054 |
0.7189 |
0.194 |
90.01 |
10192 |
1.3244 |
0.6959 |
0.6916 |
91.01 |
10304 |
1.1800 |
0.7327 |
0.5735 |
92.01 |
10416 |
1.1056 |
0.7419 |
0.2122 |
93.01 |
10528 |
1.1070 |
0.7281 |
0.1434 |
94.01 |
10640 |
1.1776 |
0.7097 |
0.4681 |
95.01 |
10752 |
1.1505 |
0.7327 |
0.2856 |
96.01 |
10864 |
1.1203 |
0.7235 |
0.6509 |
97.01 |
10976 |
1.1502 |
0.7189 |
0.1881 |
98.01 |
11088 |
1.1474 |
0.7189 |
0.5577 |
99.0 |
11100 |
1.1473 |
0.7189 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.13.1
- Datasets 2.16.1
- Tokenizers 0.15.0
đ§ Technical Details
No technical details are provided in the original document.
đ License
This model is licensed under the CC - BY - NC - 4.0 license.