Convnextv2 Large.fcmae
ConvNeXt-V2ベースの自己教師あり特徴表現モデルで、全畳み込みマスク自己エンコーダーフレームワーク(FCMAE)を使用して事前学習されており、画像分類と特徴抽出タスクに適しています。
ダウンロード数 314
リリース時間 : 1/5/2023
モデル概要
このモデルは自己教師あり事前学習済みの畳み込みニューラルネットワークで、主に画像特徴抽出とファインチューニングタスクに使用され、事前学習済みヘッドは含まれていません。
モデル特徴
自己教師あり事前学習
全畳み込みマスク自己エンコーダー(FCMAE)フレームワークを使用して事前学習されており、大量の注釈データを必要としません
効率的な特徴抽出
マルチスケール特徴マップを抽出でき、様々なコンピュータビジョンの下流タスクに適しています
大規模パラメータ
1億9640万パラメータを有し、強力な特徴表現能力を備えています
モデル能力
画像特徴抽出
画像分類
画像埋め込み生成
使用事例
コンピュータビジョン
画像分類
画像を分類し、画像内の主要なオブジェクトを識別します
ImageNet-1kデータセットで良好なパフォーマンスを発揮します
特徴抽出
下流タスクに使用するための画像の多層特徴表現を抽出します
異なるスケールの特徴マップを出力できます
🚀 convnextv2_large.fcmae
ConvNeXt-V2は自己教師付きの特徴表現モデルです。完全畳み込みマスクオートエンコーダフレームワーク(FCMAE)を用いて事前学習されています。このモデルには事前学習されたヘッドがなく、ファインチューニングまたは特徴抽出にのみ有用です。
🚀 クイックスタート
このモデルは画像分類や特徴抽出に利用できます。以下のセクションで具体的な使い方を説明します。
✨ 主な機能
- 自己教師付き学習による特徴表現の学習
- 画像分類や特徴抽出に適用可能
- 完全畳み込みマスクオートエンコーダフレームワーク(FCMAE)を用いた事前学習
📚 ドキュメント
モデルの詳細
属性 | 详情 |
---|---|
モデルタイプ | 画像分類 / 特徴バックボーン |
パラメータ数 (M) | 196.4 |
GMACs | 34.4 |
活性化関数の出力数 (M) | 43.1 |
画像サイズ | 224 x 224 |
論文 | ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders |
オリジナルリポジトリ | https://github.com/facebookresearch/ConvNeXt-V2 |
事前学習データセット | ImageNet-1k |
モデルの比較
timmのモデル結果でこのモデルのデータセットと実行時間のメトリクスを調べることができます。すべてのタイミング数値は、RTX 3090でAMPを使用したeagerモデルのPyTorch 1.13から取得されています。
モデル | top1 | top5 | 画像サイズ | パラメータ数 | GMACs | 活性化関数の出力数 | 1秒あたりのサンプル数 | バッチサイズ |
---|---|---|---|---|---|---|---|---|
convnextv2_huge.fcmae_ft_in22k_in1k_512 | 88.848 | 98.742 | 512 | 660.29 | 600.81 | 413.07 | 28.58 | 48 |
convnextv2_huge.fcmae_ft_in22k_in1k_384 | 88.668 | 98.738 | 384 | 660.29 | 337.96 | 232.35 | 50.56 | 64 |
convnext_xxlarge.clip_laion2b_soup_ft_in1k | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 | 122.45 | 256 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 | 196.84 | 256 |
convnextv2_large.fcmae_ft_in22k_in1k_384 | 88.196 | 98.532 | 384 | 197.96 | 101.1 | 126.74 | 128.94 | 128 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 | 283.42 | 256 |
convnext_xlarge.fb_in22k_ft_in1k_384 | 87.75 | 98.556 | 384 | 350.2 | 179.2 | 168.99 | 124.85 | 192 |
convnextv2_base.fcmae_ft_in22k_in1k_384 | 87.646 | 98.422 | 384 | 88.72 | 45.21 | 84.49 | 209.51 | 256 |
convnext_large.fb_in22k_ft_in1k_384 | 87.476 | 98.382 | 384 | 197.77 | 101.1 | 126.74 | 194.66 | 256 |
convnext_large_mlp.clip_laion2b_augreg_ft_in1k | 87.344 | 98.218 | 256 | 200.13 | 44.94 | 56.33 | 438.08 | 256 |
convnextv2_large.fcmae_ft_in22k_in1k | 87.26 | 98.248 | 224 | 197.96 | 34.4 | 43.13 | 376.84 | 256 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 | 365.47 | 256 |
convnext_xlarge.fb_in22k_ft_in1k | 87.002 | 98.208 | 224 | 350.2 | 60.98 | 57.5 | 368.01 | 256 |
convnext_base.fb_in22k_ft_in1k_384 | 86.796 | 98.264 | 384 | 88.59 | 45.21 | 84.49 | 366.54 | 256 |
convnextv2_base.fcmae_ft_in22k_in1k | 86.74 | 98.022 | 224 | 88.72 | 15.38 | 28.75 | 624.23 | 256 |
convnext_large.fb_in22k_ft_in1k | 86.636 | 98.028 | 224 | 197.77 | 34.4 | 43.13 | 581.43 | 256 |
convnext_base.clip_laiona_augreg_ft_in1k_384 | 86.504 | 97.97 | 384 | 88.59 | 45.21 | 84.49 | 368.14 | 256 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 | 816.14 | 256 |
convnextv2_huge.fcmae_ft_in1k | 86.256 | 97.75 | 224 | 660.29 | 115.0 | 79.07 | 154.72 | 256 |
convnext_small.in12k_ft_in1k_384 | 86.182 | 97.92 | 384 | 50.22 | 25.58 | 63.37 | 516.19 | 256 |
convnext_base.clip_laion2b_augreg_ft_in1k | 86.154 | 97.68 | 256 | 88.59 | 20.09 | 37.55 | 819.86 | 256 |
convnext_base.fb_in22k_ft_in1k | 85.822 | 97.866 | 224 | 88.59 | 15.38 | 28.75 | 1037.66 | 256 |
convnext_small.fb_in22k_ft_in1k_384 | 85.778 | 97.886 | 384 | 50.22 | 25.58 | 63.37 | 518.95 | 256 |
convnextv2_large.fcmae_ft_in1k | 85.742 | 97.584 | 224 | 197.96 | 34.4 | 43.13 | 375.23 | 256 |
convnext_small.in12k_ft_in1k | 85.174 | 97.506 | 224 | 50.22 | 8.71 | 21.56 | 1474.31 | 256 |
convnext_tiny.in12k_ft_in1k_384 | 85.118 | 97.608 | 384 | 28.59 | 13.14 | 39.48 | 856.76 | 256 |
convnextv2_tiny.fcmae_ft_in22k_in1k_384 | 85.112 | 97.63 | 384 | 28.64 | 13.14 | 39.48 | 491.32 | 256 |
convnextv2_base.fcmae_ft_in1k | 84.874 | 97.09 | 224 | 88.72 | 15.38 | 28.75 | 625.33 | 256 |
convnext_small.fb_in22k_ft_in1k | 84.562 | 97.394 | 224 | 50.22 | 8.71 | 21.56 | 1478.29 | 256 |
convnext_large.fb_in1k | 84.282 | 96.892 | 224 | 197.77 | 34.4 | 43.13 | 584.28 | 256 |
convnext_tiny.in12k_ft_in1k | 84.186 | 97.124 | 224 | 28.59 | 4.47 | 13.44 | 2433.7 | 256 |
convnext_tiny.fb_in22k_ft_in1k_384 | 84.084 | 97.14 | 384 | 28.59 | 13.14 | 39.48 | 862.95 | 256 |
convnextv2_tiny.fcmae_ft_in22k_in1k | 83.894 | 96.964 | 224 | 28.64 | 4.47 | 13.44 | 1452.72 | 256 |
convnext_base.fb_in1k | 83.82 | 96.746 | 224 | 88.59 | 15.38 | 28.75 | 1054.0 | 256 |
convnextv2_nano.fcmae_ft_in22k_in1k_384 | 83.37 | 96.742 | 384 | 15.62 | 7.22 | 24.61 | 801.72 | 256 |
convnext_small.fb_in1k | 83.142 | 96.434 | 224 | 50.22 | 8.71 | 21.56 | 1464.0 | 256 |
convnextv2_tiny.fcmae_ft_in1k | 82.92 | 96.284 | 224 | 28.64 | 4.47 | 13.44 | 1425.62 | 256 |
convnext_tiny.fb_in22k_ft_in1k | 82.898 | 96.616 | 224 | 28.59 | 4.47 | 13.44 | 2480.88 | 256 |
convnext_nano.in12k_ft_in1k | 82.282 | 96.344 | 224 | 15.59 | 2.46 | 8.37 | 3926.52 | 256 |
convnext_tiny_hnf.a2h_in1k | 82.216 | 95.852 | 224 | 28.59 | 4.47 | 13.44 | 2529.75 | 256 |
convnext_tiny.fb_in1k | 82.066 | 95.854 | 224 | 28.59 | 4.47 | 13.44 | 2346.26 | 256 |
convnextv2_nano.fcmae_ft_in22k_in1k | 82.03 | 96.166 | 224 | 15.62 | 2.46 | 8.37 | 2300.18 | 256 |
convnextv2_nano.fcmae_ft_in1k | 81.83 | 95.738 | 224 | 15.62 | 2.46 | 8.37 | 2321.48 | 256 |
convnext_nano_ols.d1h_in1k | 80.866 | 95.246 | 224 | 15.65 | 2.65 | 9.38 | 3523.85 | 256 |
convnext_nano.d1h_in1k | 80.768 | 95.334 | 224 | 15.59 | 2.46 | 8.37 | 3915.58 | 256 |
convnextv2_pico.fcmae_ft_in1k | 80.304 | 95.072 | 224 | 9.07 | 1.37 | 6.1 | 3274.57 | 256 |
convnext_pico.d1_in1k | 79.526 | 94.558 | 224 | 9.05 | 1.37 | 6.1 | 5686.88 | 256 |
convnext_pico_ols.d1_in1k | 79.522 | 94.692 | 224 | 9.06 | 1.43 | 6.5 | 5422.46 | 256 |
convnextv2_femto.fcmae_ft_in1k | 78.488 | 93.98 | 224 | 5.23 | 0.79 | 4.57 | 4264.2 | 256 |
convnext_femto_ols.d1_in1k | 77.86 | 93.83 | 224 | 5.23 | 0.82 | 4.87 | 6910.6 | 256 |
convnext_femto.d1_in1k | 77.454 | 93.68 | 224 | 5.22 | 0.79 | 4.57 | 7189.92 | 256 |
convnextv2_atto.fcmae_ft_in1k | 76.664 | 93.044 | 224 | 3.71 | 0.55 | 3.81 | 4728.91 | 256 |
convnext_atto_ols.a2_in1k | 75.88 | 92.846 | 224 | 3.7 | 0.58 | 4.11 | 7963.16 | 256 |
💻 使用例
基本的な使用法
画像分類
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('convnextv2_large.fcmae', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
特徴マップの抽出
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'convnextv2_large.fcmae',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 192, 56, 56])
# torch.Size([1, 384, 28, 28])
# torch.Size([1, 768, 14, 14])
# torch.Size([1, 1536, 7, 7])
print(o.shape)
画像埋め込み
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'convnextv2_large.fcmae',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1536, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
📄 ライセンス
このモデルはCC BY-NC 4.0ライセンスの下で提供されています。
Nsfw Image Detection
Apache-2.0
ViTアーキテクチャに基づくNSFW画像分類モデル。ImageNet-21kデータセットで事前学習し、80,000枚の画像でファインチューニングされ、通常コンテンツとNSFWコンテンツを区別します。
画像分類
Transformers

N
Falconsai
82.4M
588
Fairface Age Image Detection
Apache-2.0
Vision Transformerアーキテクチャに基づく画像分類モデルで、ImageNet-21kデータセットで事前学習されており、多クラス画像分類タスクに適しています
画像分類
Transformers

F
dima806
76.6M
10
Dinov2 Small
Apache-2.0
DINOv2手法でトレーニングされた小型視覚Transformerモデル、自己教師あり学習で画像特徴を抽出
画像分類
Transformers

D
facebook
5.0M
31
Vit Base Patch16 224
Apache-2.0
ImageNet - 21kで事前学習し、ImageNetでファインチューニングしたビジュアルトランスフォーマーモデルで、画像分類タスクに使用されます。
画像分類
V
google
4.8M
775
Vit Base Patch16 224 In21k
Apache-2.0
ImageNet - 21kデータセットを使って事前学習されたビジュアルTransformerモデルで、画像分類タスクに使用されます。
画像分類
V
google
2.2M
323
Dinov2 Base
Apache-2.0
DINOv2手法でトレーニングされた視覚Transformerモデル、自己教師あり学習で画像特徴を抽出
画像分類
Transformers

D
facebook
1.9M
126
Gender Classification
PyTorchとHuggingPicsを使用して構築された画像分類モデルで、画像内の性別を識別します
画像分類
Transformers

G
rizvandwiki
1.8M
48
Vit Base Nsfw Detector
Apache-2.0
Vision Transformer (ViT)アーキテクチャに基づく画像分類モデルで、画像がNSFW(不適切)コンテンツを含むかどうかを検出するために特別に設計されています。
画像分類
Transformers

V
AdamCodd
1.2M
47
Vit Hybrid Base Bit 384
Apache-2.0
ハイブリッドビジョントランスフォーマー(ViT)モデルは、畳み込みネットワークとTransformerアーキテクチャを組み合わせたもので、画像分類タスクにおいてImageNetで優れた性能を発揮します。
画像分類
Transformers

V
google
992.28k
6
Gender Classification 2
これはPyTorchフレームワークとHuggingPicsツールで生成された画像分類モデルで、性別分類タスク専用です。
画像分類
Transformers

G
rizvandwiki
906.98k
32
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98