Yinka
Y
Yinka
Classicalによって開発
このモデルは中国語テキスト埋め込みベンチマーク(MTEB)で複数のタスク評価を行っており、テキスト類似度、分類、クラスタリング、検索などのタスクを含みます。
ダウンロード数 388
リリース時間 : 5/30/2024
モデル概要
これは中国語テキスト埋め込みベンチマーク(MTEB)で評価されたモデルで、意味類似度計算、テキスト分類、クラスタリング、情報検索などの様々な自然言語処理タスクをサポートします。
モデル特徴
マルチタスク評価
MTEB中国語ベンチマークの複数タスクで包括的な評価を行っており、STS、分類、クラスタリング、検索などを含みます。
中国語最適化
中国語テキスト処理に特化して最適化されており、複数の中国語データセットで良好な性能を発揮します。
多様な指標
ピアソン相関係数、スピアマン相関係数、正解率、F1スコアなど様々な評価指標を提供します。
モデル能力
テキスト類似度計算
テキスト分類
テキストクラスタリング
情報検索
意味マッチング
質問応答再ランキング
使用事例
電子商取引
商品レビュー分類
ECプラットフォームの商品レビューを感情分類
JDReviewデータセットで88.48%の正解率を達成
商品検索
ECプラットフォームの商品検索と推薦
EcomRetrievalデータセットでMAP@10が63.11を達成
医療健康
医療QA検索
医療分野の質問検索とマッチング
CMedQAv1とCMedQAv2データセットでMAPがそれぞれ89.26と90.05を達成
医学文献検索
医学関連文献の検索とランキング
MedicalRetrievalデータセットでNDCG@10が65.20を達成
汎用意味理解
意味類似度計算
2つのテキスト間の意味類似度を計算
LCQMCデータセットでコサイン類似度ピアソン相関係数が73.68を達成
テキスト分類
テキストの多クラス分類
IFlyTekデータセットで51.77%の正解率を達成
tags:
- mteb model-index:
- name: checkpoint-1431
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson value: 56.306314279047875
- type: cos_sim_spearman value: 61.020227685004016
- type: euclidean_pearson value: 58.61821670933433
- type: euclidean_spearman value: 60.131457106640674
- type: manhattan_pearson value: 58.6189460369694
- type: manhattan_spearman value: 60.126350618526224
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 55.8612958476143
- type: cos_sim_spearman value: 59.01977664864512
- type: euclidean_pearson value: 62.028094897243655
- type: euclidean_spearman value: 58.6046814257705
- type: manhattan_pearson value: 62.02580042431887
- type: manhattan_spearman value: 58.60626890004892
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy value: 49.496
- type: f1 value: 46.673963383873065
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 70.73971622592535
- type: cos_sim_spearman value: 72.76102992060764
- type: euclidean_pearson value: 71.04525865868672
- type: euclidean_spearman value: 72.4032852155075
- type: manhattan_pearson value: 71.03693009336658
- type: manhattan_spearman value: 72.39635701224252
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure value: 56.34751074520767
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure value: 48.4856662121073
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map value: 89.26384109024997
- type: mrr value: 91.27261904761905
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map value: 90.0464058154547
- type: mrr value: 92.06480158730159
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 27.236
- type: map_at_10 value: 40.778
- type: map_at_100 value: 42.692
- type: map_at_1000 value: 42.787
- type: map_at_3 value: 36.362
- type: map_at_5 value: 38.839
- type: mrr_at_1 value: 41.335
- type: mrr_at_10 value: 49.867
- type: mrr_at_100 value: 50.812999999999995
- type: mrr_at_1000 value: 50.848000000000006
- type: mrr_at_3 value: 47.354
- type: mrr_at_5 value: 48.718
- type: ndcg_at_1 value: 41.335
- type: ndcg_at_10 value: 47.642
- type: ndcg_at_100 value: 54.855
- type: ndcg_at_1000 value: 56.449000000000005
- type: ndcg_at_3 value: 42.203
- type: ndcg_at_5 value: 44.416
- type: precision_at_1 value: 41.335
- type: precision_at_10 value: 10.568
- type: precision_at_100 value: 1.6400000000000001
- type: precision_at_1000 value: 0.184
- type: precision_at_3 value: 23.998
- type: precision_at_5 value: 17.389
- type: recall_at_1 value: 27.236
- type: recall_at_10 value: 58.80800000000001
- type: recall_at_100 value: 88.411
- type: recall_at_1000 value: 99.032
- type: recall_at_3 value: 42.253
- type: recall_at_5 value: 49.118
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy value: 86.03728202044498
- type: cos_sim_ap value: 92.49469583272597
- type: cos_sim_f1 value: 86.74095974528088
- type: cos_sim_precision value: 84.43657294664601
- type: cos_sim_recall value: 89.17465513210195
- type: dot_accuracy value: 72.21888153938664
- type: dot_ap value: 80.59377163340332
- type: dot_f1 value: 74.96686040583258
- type: dot_precision value: 66.4737793851718
- type: dot_recall value: 85.94809445873275
- type: euclidean_accuracy value: 85.47203848466627
- type: euclidean_ap value: 91.89152584749868
- type: euclidean_f1 value: 86.38105975197294
- type: euclidean_precision value: 83.40953625081646
- type: euclidean_recall value: 89.5721299976619
- type: manhattan_accuracy value: 85.3758268190018
- type: manhattan_ap value: 91.88989707722311
- type: manhattan_f1 value: 86.39767519839052
- type: manhattan_precision value: 82.76231263383298
- type: manhattan_recall value: 90.36707972878185
- type: max_accuracy value: 86.03728202044498
- type: max_ap value: 92.49469583272597
- type: max_f1 value: 86.74095974528088
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 74.34100000000001
- type: map_at_10 value: 82.49499999999999
- type: map_at_100 value: 82.64200000000001
- type: map_at_1000 value: 82.643
- type: map_at_3 value: 81.142
- type: map_at_5 value: 81.95400000000001
- type: mrr_at_1 value: 74.71
- type: mrr_at_10 value: 82.553
- type: mrr_at_100 value: 82.699
- type: mrr_at_1000 value: 82.70100000000001
- type: mrr_at_3 value: 81.279
- type: mrr_at_5 value: 82.069
- type: ndcg_at_1 value: 74.605
- type: ndcg_at_10 value: 85.946
- type: ndcg_at_100 value: 86.607
- type: ndcg_at_1000 value: 86.669
- type: ndcg_at_3 value: 83.263
- type: ndcg_at_5 value: 84.71600000000001
- type: precision_at_1 value: 74.605
- type: precision_at_10 value: 9.758
- type: precision_at_100 value: 1.005
- type: precision_at_1000 value: 0.101
- type: precision_at_3 value: 29.996000000000002
- type: precision_at_5 value: 18.736
- type: recall_at_1 value: 74.34100000000001
- type: recall_at_10 value: 96.523
- type: recall_at_100 value: 99.473
- type: recall_at_1000 value: 100.0
- type: recall_at_3 value: 89.278
- type: recall_at_5 value: 92.83500000000001
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 26.950000000000003
- type: map_at_10 value: 82.408
- type: map_at_100 value: 85.057
- type: map_at_1000 value: 85.09100000000001
- type: map_at_3 value: 57.635999999999996
- type: map_at_5 value: 72.48
- type: mrr_at_1 value: 92.15
- type: mrr_at_10 value: 94.554
- type: mrr_at_100 value: 94.608
- type: mrr_at_1000 value: 94.61
- type: mrr_at_3 value: 94.292
- type: mrr_at_5 value: 94.459
- type: ndcg_at_1 value: 92.15
- type: ndcg_at_10 value: 89.108
- type: ndcg_at_100 value: 91.525
- type: ndcg_at_1000 value: 91.82900000000001
- type: ndcg_at_3 value: 88.44
- type: ndcg_at_5 value: 87.271
- type: precision_at_1 value: 92.15
- type: precision_at_10 value: 42.29
- type: precision_at_100 value: 4.812
- type: precision_at_1000 value: 0.48900000000000005
- type: precision_at_3 value: 79.14999999999999
- type: precision_at_5 value: 66.64
- type: recall_at_1 value: 26.950000000000003
- type: recall_at_10 value: 89.832
- type: recall_at_100 value: 97.921
- type: recall_at_1000 value: 99.471
- type: recall_at_3 value: 59.562000000000005
- type: recall_at_5 value: 76.533
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 53.5
- type: map_at_10 value: 63.105999999999995
- type: map_at_100 value: 63.63100000000001
- type: map_at_1000 value: 63.641999999999996
- type: map_at_3 value: 60.617
- type: map_at_5 value: 62.132
- type: mrr_at_1 value: 53.5
- type: mrr_at_10 value: 63.105999999999995
- type: mrr_at_100 value: 63.63100000000001
- type: mrr_at_1000 value: 63.641999999999996
- type: mrr_at_3 value: 60.617
- type: mrr_at_5 value: 62.132
- type: ndcg_at_1 value: 53.5
- type: ndcg_at_10 value: 67.92200000000001
- type: ndcg_at_100 value: 70.486
- type: ndcg_at_1000 value: 70.777
- type: ndcg_at_3 value: 62.853
- type: ndcg_at_5 value: 65.59899999999999
- type: precision_at_1 value: 53.5
- type: precision_at_10 value: 8.309999999999999
- type: precision_at_100 value: 0.951
- type: precision_at_1000 value: 0.097
- type: precision_at_3 value: 23.1
- type: precision_at_5 value: 15.2
- type: recall_at_1 value: 53.5
- type: recall_at_10 value: 83.1
- type: recall_at_100 value: 95.1
- type: recall_at_1000 value: 97.39999999999999
- type: recall_at_3 value: 69.3
- type: recall_at_5 value: 76.0
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy value: 51.773759138130046
- type: f1 value: 40.38600802756481
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy value: 88.48030018761726
- type: ap value: 59.2732541555627
- type: f1 value: 83.58836007358619
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 73.67511194245922
- type: cos_sim_spearman value: 79.43347759067298
- type: euclidean_pearson value: 79.04491504318766
- type: euclidean_spearman value: 79.14478545356785
- type: manhattan_pearson value: 79.03365022867428
- type: manhattan_spearman value: 79.13172717619908
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 67.184
- type: map_at_10 value: 76.24600000000001
- type: map_at_100 value: 76.563
- type: map_at_1000 value: 76.575
- type: map_at_3 value: 74.522
- type: map_at_5 value: 75.598
- type: mrr_at_1 value: 69.47
- type: mrr_at_10 value: 76.8
- type: mrr_at_100 value: 77.082
- type: mrr_at_1000 value: 77.093
- type: mrr_at_3 value: 75.29400000000001
- type: mrr_at_5 value: 76.24
- type: ndcg_at_1 value: 69.47
- type: ndcg_at_10 value: 79.81099999999999
- type: ndcg_at_100 value: 81.187
- type: ndcg_at_1000 value: 81.492
- type: ndcg_at_3 value: 76.536
- type: ndcg_at_5 value: 78.367
- type: precision_at_1 value: 69.47
- type: precision_at_10 value: 9.599
- type: precision_at_100 value: 1.026
- type: precision_at_1000 value: 0.105
- type: precision_at_3 value: 28.777
- type: precision_at_5 value: 18.232
- type: recall_at_1 value: 67.184
- type: recall_at_10 value: 90.211
- type: recall_at_100 value: 96.322
- type: recall_at_1000 value: 98.699
- type: recall_at_3 value: 81.556
- type: recall_at_5 value: 85.931
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy value: 76.96032279757901
- type: f1 value: 73.48052314033545
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy value: 84.64357767316744
- type: f1 value: 83.58250539497922
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 56.00000000000001
- type: map_at_10 value: 62.066
- type: map_at_100 value: 62.553000000000004
- type: map_at_1000 value: 62.598
- type: map_at_3 value: 60.4
- type: map_at_5 value: 61.370000000000005
- type: mrr_at_1 value: 56.2
- type: mrr_at_10 value: 62.166
- type: mrr_at_100 value: 62.653000000000006
- type: mrr_at_1000 value: 62.699000000000005
- type: mrr_at_3 value: 60.5
- type: mrr_at_5 value: 61.47
- type: ndcg_at_1 value: 56.00000000000001
- type: ndcg_at_10 value: 65.199
- type: ndcg_at_100 value: 67.79899999999999
- type: ndcg_at_1000 value: 69.056
- type: ndcg_at_3 value: 61.814
- type: ndcg_at_5 value: 63.553000000000004
- type: precision_at_1 value: 56.00000000000001
- type: precision_at_10 value: 7.51
- type: precision_at_100 value: 0.878
- type: precision_at_1000 value: 0.098
- type: precision_at_3 value: 21.967
- type: precision_at_5 value: 14.02
- type: recall_at_1 value: 56.00000000000001
- type: recall_at_10 value: 75.1
- type: recall_at_100 value: 87.8
- type: recall_at_1000 value: 97.7
- type: recall_at_3 value: 65.9
- type: recall_at_5 value: 70.1
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map value: 32.74158258279793
- type: mrr value: 31.56071428571428
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy value: 78.96666666666667
- type: f1 value: 78.82528563818045
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy value: 83.54087709799674
- type: cos_sim_ap value: 87.26170197077586
- type: cos_sim_f1 value: 84.7609561752988
- type: cos_sim_precision value: 80.20735155513667
- type: cos_sim_recall value: 89.86272439281943
- type: dot_accuracy value: 72.22523010286952
- type: dot_ap value: 79.51975358187732
- type: dot_f1 value: 76.32183908045977
- type: dot_precision value: 67.58957654723126
- type: dot_recall value: 87.64519535374869
- type: euclidean_accuracy value: 82.0249052517596
- type: euclidean_ap value: 85.32829948726406
- type: euclidean_f1 value: 83.24924318869829
- type: euclidean_precision value: 79.71014492753623
- type: euclidean_recall value: 87.11721224920802
- type: manhattan_accuracy value: 82.13318895506227
- type: manhattan_ap value: 85.28856869288006
- type: manhattan_f1 value: 83.34946757018393
- type: manhattan_precision value: 76.94369973190348
- type: manhattan_recall value: 90.91869060190075
- type: max_accuracy value: 83.54087709799674
- type: max_ap value: 87.26170197077586
- type: max_f1 value: 84.7609561752988
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy value: 94.56
- type: ap value: 92.80848436710805
- type: f1 value: 94.54951966576111
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 39.0866558287863
- type: cos_sim_spearman value: 45.9211126233312
- type: euclidean_pearson value: 44.86568743222145
- type: euclidean_spearman value: 45.63882757207507
- type: manhattan_pearson value: 44.89480036909126
- type: manhattan_spearman value: 45.65929449046206
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 43.04701793979569
- type: cos_sim_spearman value: 44.87491033760315
- type: euclidean_pearson value: 36.2004061032567
- type: euclidean_spearman value: 41.44823909683865
- type: manhattan_pearson value: 36.136113427955095
- type: manhattan_spearman value: 41.39225495993949
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 61.65611315777857
- type: cos_sim_spearman value: 64.4067673105648
- type: euclidean_pearson value: 61.814977248797184
- type: euclidean_spearman value: 63.99473350700169
- type: manhattan_pearson value: 61.684304629588624
- type: manhattan_spearman value: 63.97831213239316
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 76.57324933064379
- type: cos_sim_spearman value: 79.23602286949782
- type: euclidean_pearson value: 80.28226284310948
- type: euclidean_spearman value: 80.32210477608423
- type: manhattan_pearson value: 80.27262188617811
- type: manhattan_spearman value: 80.31619185039723
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map value: 67.05266891356277
- type: mrr value: 77.1906333623497
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 28.212
- type: map_at_10 value: 78.932
- type: map_at_100 value: 82.51899999999999
- type: map_at_1000 value: 82.575
- type: map_at_3 value: 55.614
- type: map_at_5 value: 68.304
- type: mrr_at_1 value: 91.211
- type: mrr_at_10 value: 93.589
- type: mrr_at_100 value: 93.659
- type: mrr_at_1000 value: 93.662
- type: mrr_at_3 value: 93.218
- type: mrr_at_5 value: 93.453
- type: ndcg_at_1 value: 91.211
- type: ndcg_at_10 value: 86.24000000000001
- type: ndcg_at_100 value: 89.614
- type: ndcg_at_1000 value: 90.14
- type: ndcg_at_3 value: 87.589
- type: ndcg_at_5 value: 86.265
- type: precision_at_1 value: 91.211
- type: precision_at_10 value: 42.626
- type: precision_at_100 value: 5.043
- type: precision_at_1000 value: 0.517
- type: precision_at_3 value: 76.42
- type: precision_at_5 value: 64.045
- type: recall_at_1 value: 28.212
- type: recall_at_10 value: 85.223
- type: recall_at_100 value: 96.229
- type: recall_at_1000 value: 98.849
- type: recall_at_3 value: 57.30800000000001
- type: recall_at_5 value: 71.661
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy value: 54.385000000000005
- type: f1 value: 52.38762400903556
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure value: 74.55283855942916
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure value: 68.55115316700493
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1 value: 58.8
- type: map_at_10 value: 69.035
- type: map_at_100 value: 69.52000000000001
- type: map_at_1000 value: 69.529
- type: map_at_3 value: 67.417
- type: map_at_5 value: 68.407
- type: mrr_at_1 value: 58.8
- type: mrr_at_10 value: 69.035
- type: mrr_at_100 value: 69.52000000000001
- type: mrr_at_1000 value: 69.529
- type: mrr_at_3 value: 67.417
- type: mrr_at_5 value: 68.407
- type: ndcg_at_1 value: 58.8
- type: ndcg_at_10 value: 73.395
- type: ndcg_at_100 value: 75.62
- type: ndcg_at_1000 value: 75.90299999999999
- type: ndcg_at_3 value: 70.11800000000001
- type: ndcg_at_5 value: 71.87400000000001
- type: precision_at_1 value: 58.8
- type: precision_at_10 value: 8.68
- type: precision_at_100 value: 0.9690000000000001
- type: precision_at_1000 value: 0.099
- type: precision_at_3 value: 25.967000000000002
- type: precision_at_5 value: 16.42
- type: recall_at_1 value: 58.8
- type: recall_at_10 value: 86.8
- type: recall_at_100 value: 96.89999999999999
- type: recall_at_1000 value: 99.2
- type: recall_at_3 value: 77.9
- type: recall_at_5 value: 82.1
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy value: 89.42
- type: ap value: 75.35978503182068
- type: f1 value: 88.01006394348263
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
Yinka
Yinka embedding 模型是在开原模型stella-v3.5-mrl上续训的,采用了piccolo2提到的多任务混合损失(multi-task hybrid loss training)。同样本模型也支持了可变的向量维度。
使用方法
该模型的使用方法同stella-v3.5-mrl一样, 无需任何前缀。
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import normalize
model = SentenceTransformer("Classical/Yinka")
# 注意先不要normalize! 选取前n维后再normalize
vectors = model.encode(["text1", "text2"], normalize_embeddings=False)
print(vectors.shape) # shape is [2,1792]
n_dims = 768
cut_vecs = normalize(vectors[:, :n_dims])
结果
Model Name | Model Size (GB) | Dimension | Sequence Length | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) | Average (35) |
---|---|---|---|---|---|---|---|---|---|---|
Yinka | 1.21 | 1792 | 512 | 74.30 | 61.99 | 89.87 | 69.77 | 74.40 | 63.30 | 70.79 |
stella-v3.5-mrl | 1.21 | 1792 | 512 | 71.56 | 54.39 | 88.09 | 68.45 | 73.51 | 62.48 | 68.56 |
piccolo-large-zh-v2 | 1.21 | 1792 | 512 | 74.59 | 62.17 | 90.24 | 70 | 74.36 | 63.5 | 70.95 |
训练细节
TODO
Licence
本模型采用MIT licence.
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98