🚀 camembert-base-squadFR-fquad-piaf
このモデルは、フランス語の質問応答モデルです。CamemBERT のベースモデルを、3つのフランス語のQ&Aデータセットの組み合わせでファインチューニングしたものです。
📚 詳細ドキュメント
説明
質問応答のフランス語モデルで、ベースのCamemBERT を3つのフランス語のQ&Aデータセットの組み合わせでファインチューニングしています。
- PIAFv1.1
- FQuADv1.0
- SQuAD-FR (SQuADを自動翻訳したフランス語版)
学習ハイパーパラメータ
python run_squad.py \
--model_type camembert \
--model_name_or_path camembert-base \
--do_train --do_eval \
--train_file data/SQuAD+fquad+piaf.json \
--predict_file data/fquad_valid.json \
--per_gpu_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 4 \
--max_seq_length 384 \
--doc_stride 128 \
--save_steps 10000
評価結果
FQuAD v1.0 評価
{"f1": 79.81, "exact_match": 55.14}
SQuAD-FR 評価
{"f1": 80.61, "exact_match": 59.54}
データセット
属性 |
詳細 |
データセット |
piaf、FQuAD、SQuAD-FR |
ウィジェットの例
- 質問: "Comment s'appelle le portail open data du gouvernement ?"
- 文脈: "Etalab est une administration publique française qui fait notamment office de Chief Data Officer de l'État et coordonne la conception et la mise en œuvre de sa stratégie dans le domaine de la donnée (ouverture et partage des données publiques ou open data, exploitation des données et intelligence artificielle...). Ainsi, Etalab développe et maintient le portail des données ouvertes du gouvernement français data.gouv.fr.
Etalab promeut également une plus grande ouverture l'administration sur la société (gouvernement ouvert) : transparence de l'action publique, innovation ouverte, participation citoyenne... elle promeut l’innovation, l’expérimentation, les méthodes de travail ouvertes, agiles et itératives, ainsi que les synergies avec la société civile pour décloisonner l’administration et favoriser l’adoption des meilleures pratiques professionnelles dans le domaine du numérique. À ce titre elle étudie notamment l’opportunité de recourir à des technologies en voie de maturation issues du monde de la recherche.
Cette entité chargée de l'innovation au sein de l'administration doit contribuer à l'amélioration du service public grâce au numérique. Elle est rattachée à la Direction interministérielle du numérique, dont les missions et l’organisation ont été fixées par le décret du 30 octobre 2019. Dirigé par Laure Lucchesi depuis 2016, elle rassemble une équipe pluridisciplinaire d'une trentaine de personnes."
💻 使用例
基本的な使用法
from transformers import pipeline
nlp = pipeline('question-answering', model='etalab-ia/camembert-base-squadFR-fquad-piaf', tokenizer='etalab-ia/camembert-base-squadFR-fquad-piaf')
nlp({
'question': "Qui est Claude Monet?",
'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme."
})
🙏 謝辞
この研究は、GENCI–IDRISのHPCリソースを使用して行われました(Grant 2020-AD011011224)。
📖 引用
PIAF
@inproceedings{KeraronLBAMSSS20,
author = {Rachel Keraron and
Guillaume Lancrenon and
Mathilde Bras and
Fr{\'{e}}d{\'{e}}ric Allary and
Gilles Moyse and
Thomas Scialom and
Edmundo{-}Pavel Soriano{-}Morales and
Jacopo Staiano},
title = {Project {PIAF:} Building a Native French Question-Answering Dataset},
booktitle = {{LREC}},
pages = {5481--5490},
publisher = {European Language Resources Association},
year = {2020}
}
FQuAD
@article{dHoffschmidt2020FQuADFQ,
title={FQuAD: French Question Answering Dataset},
author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich},
journal={ArXiv},
year={2020},
volume={abs/2002.06071}
}
SQuAD-FR
@MISC{kabbadj2018,
author = "Kabbadj, Ali",
title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ",
editor = "linkedin.com",
month = "November",
year = "2018",
url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}",
note = "[Online; posted 11-November-2018]",
}
CamemBERT
HFモデルカード : https://huggingface.co/camembert-base
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}