Modernbert Base Sts
これは、ModernBERT-baseモデルをstsbデータセットで微調整した文変換器モデルで、文や段落の768次元の密集ベクトル表現を生成するために使用されます。
ダウンロード数 315
リリース時間 : 1/12/2025
モデル概要
このモデルは、文や段落を768次元の密集ベクトル空間にマッピングし、意味的テキスト類似度、意味的検索、复述マイニング、テキスト分類、クラスタリングなどのタスクに使用できます。
モデル特徴
長テキストサポート
最大8192トークンのシーケンス長をサポートし、長テキストの処理に適しています。
効率的な類似度計算
CoSENTLoss損失関数を使用して最適化され、意味的類似度タスクで優れた性能を発揮します。
多機能ベクトル表現
生成される768次元のベクトルは、さまざまな下流のNLPタスクに使用できます。
モデル能力
意味的テキスト類似度計算
意味的検索
复述マイニング
テキスト分類
テキストクラスタリング
使用事例
情報検索
類似文書検索
文書ベクトルの類似度を計算することで、関連する文書を推薦します。
質問応答システム
質問マッチング
ユーザーの質問と知識ベースの質問の類似度を計算し、最適な回答を見つけます。
🚀 answerdotai/ModernBERT-baseベースの文章変換器
このプロジェクトは answerdotai/ModernBERT-base モデルをベースに、stsb データセットで微調整し、文章変換器モデルを得ました。このモデルは文章や段落を768次元の密ベクトル空間にマッピングでき、意味的なテキスト類似度計算、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどのタスクに利用できます。
🚀 クイックスタート
このモデルは answerdotai/ModernBERT-base をベースに、stsb データセットで微調整された sentence-transformers モデルです。文章や段落を768次元の密ベクトル空間にマッピングでき、意味的なテキスト類似度、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどの自然言語処理タスクに利用できます。
✨ 主な機能
- 意味類似度計算:文章間の意味類似度を正確に計算できます。
- 多タスク対応:意味検索、言い換えマイニング、テキスト分類、クラスタリングなどの様々な自然言語処理タスクに利用できます。
- 高次元ベクトルマッピング:文章や段落を768次元の密ベクトル空間にマッピングします。
📦 インストール
まず、Sentence Transformers ライブラリをインストールする必要があります。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("nickprock/ModernBERT-base-sts")
# 运行推理
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 ドキュメント
モデル詳細
モデル説明
属性 | 詳細 |
---|---|
モデルタイプ | 文章変換器 |
ベースモデル | answerdotai/ModernBERT-base |
最大シーケンス長 | 8192 トークン |
出力次元 | 768 次元 |
類似度関数 | コサイン類似度 |
学習データセット | stsb |
言語 | 英語 |
モデルの出所
- ドキュメント:Sentence Transformers ドキュメント
- リポジトリ:GitHub 上の Sentence Transformers
- Hugging Face:Hugging Face 上の Sentence Transformers
完全なモデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
評価
指標
指標 | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8824 | 0.8564 |
spearman_cosine | 0.8877 | 0.8684 |
学習詳細
学習データセット
- データセット:stsb
- サイズ:5749 個の学習サンプル
- 列:
sentence1
、sentence2
およびscore
- 損失関数:
CoSENTLoss
、パラメータは以下の通りです。
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
評価データセット
- データセット:stsb
- サイズ:1500 個の評価サンプル
- 列:
sentence1
、sentence2
およびscore
- 損失関数:
CoSENTLoss
、パラメータは以下の通りです。
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
学習ハイパーパラメータ
非デフォルトのハイパーパラメータ
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
すべてのハイパーパラメータ
クリックして展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
学習ログ
エポック | ステップ | 学習損失 | 検証損失 | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.2778 | 100 | 4.5713 | 4.3257 | 0.8018 | - |
0.5556 | 200 | 4.3301 | 4.3966 | 0.8042 | - |
0.8333 | 300 | 4.3008 | 4.2251 | 0.8613 | - |
1.1111 | 400 | 4.156 | 4.5078 | 0.8687 | - |
1.3889 | 500 | 4.0776 | 4.3005 | 0.8801 | - |
1.6667 | 600 | 4.0256 | 4.2623 | 0.8804 | - |
1.9444 | 700 | 4.0178 | 4.3090 | 0.8807 | - |
2.2222 | 800 | 3.7932 | 4.5140 | 0.8812 | - |
2.5 | 900 | 3.7444 | 4.5806 | 0.8803 | - |
2.7778 | 1000 | 3.7099 | 4.6048 | 0.8818 | - |
3.0556 | 1100 | 3.6924 | 4.7359 | 0.8841 | - |
3.3333 | 1200 | 3.4517 | 5.0212 | 0.8858 | - |
3.6111 | 1300 | 3.3672 | 5.1527 | 0.8871 | - |
3.8889 | 1400 | 3.3959 | 5.1539 | 0.8877 | - |
-1 | -1 | - | - | - | 0.8684 |
フレームワークバージョン
- Python:3.10.12
- Sentence Transformers:3.4.0.dev0
- Transformers:4.49.0.dev0
- PyTorch:2.4.1+cu121
- Accelerate:0.34.2
- Datasets:3.2.0
- Tokenizers:0.21.0
🔧 技術詳細
引用
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98