Modernbert Base Sts
這是一個基於ModernBERT-base模型在stsb數據集上微調的句子轉換器模型,用於生成句子和段落的768維密集向量表示。
下載量 315
發布時間 : 1/12/2025
模型概述
該模型將句子和段落映射到768維密集向量空間,可用於語義文本相似度、語義搜索、複述挖掘、文本分類、聚類等任務。
模型特點
長文本支持
支持最大8192個token的序列長度,適合處理長文本
高效相似度計算
使用CoSENTLoss損失函數優化,在語義相似度任務上表現優異
多功能向量表示
生成的768維向量可用於多種下游NLP任務
模型能力
語義文本相似度計算
語義搜索
複述挖掘
文本分類
文本聚類
使用案例
信息檢索
相似文檔檢索
通過計算文檔向量相似度,實現相關文檔推薦
問答系統
問題匹配
計算用戶問題與知識庫問題的相似度,找到最佳匹配答案
🚀 基於answerdotai/ModernBERT-base的句子轉換器
本項目基於 answerdotai/ModernBERT-base 模型,在 stsb 數據集上進行微調,得到了一個句子轉換器模型。該模型可以將句子和段落映射到768維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
本模型是一個基於 answerdotai/ModernBERT-base 在 stsb 數據集上微調的 sentence-transformers 模型。它能將句子和段落映射到768維的密集向量空間,可用於語義文本相似度、語義搜索、釋義挖掘、文本分類、聚類等任務。
✨ 主要特性
- 語義相似度計算:能夠準確計算句子之間的語義相似度。
- 多任務支持:可用於語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
- 高維向量映射:將句子和段落映射到768維的密集向量空間。
📦 安裝指南
首先,你需要安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("nickprock/ModernBERT-base-sts")
# 運行推理
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | answerdotai/ModernBERT-base |
最大序列長度 | 8192 個標記 |
輸出維度 | 768 維 |
相似度函數 | 餘弦相似度 |
訓練數據集 | stsb |
語言 | 英語 |
模型來源
- 文檔:Sentence Transformers 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
評估
指標
指標 | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8824 | 0.8564 |
spearman_cosine | 0.8877 | 0.8684 |
訓練詳情
訓練數據集
- 數據集:stsb
- 大小:5749 個訓練樣本
- 列:
sentence1
、sentence2
和score
- 損失函數:
CoSENTLoss
,參數如下:
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
評估數據集
- 數據集:stsb
- 大小:1500 個評估樣本
- 列:
sentence1
、sentence2
和score
- 損失函數:
CoSENTLoss
,參數如下:
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
訓練超參數
非默認超參數
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
訓練日誌
輪次 | 步數 | 訓練損失 | 驗證損失 | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.2778 | 100 | 4.5713 | 4.3257 | 0.8018 | - |
0.5556 | 200 | 4.3301 | 4.3966 | 0.8042 | - |
0.8333 | 300 | 4.3008 | 4.2251 | 0.8613 | - |
1.1111 | 400 | 4.156 | 4.5078 | 0.8687 | - |
1.3889 | 500 | 4.0776 | 4.3005 | 0.8801 | - |
1.6667 | 600 | 4.0256 | 4.2623 | 0.8804 | - |
1.9444 | 700 | 4.0178 | 4.3090 | 0.8807 | - |
2.2222 | 800 | 3.7932 | 4.5140 | 0.8812 | - |
2.5 | 900 | 3.7444 | 4.5806 | 0.8803 | - |
2.7778 | 1000 | 3.7099 | 4.6048 | 0.8818 | - |
3.0556 | 1100 | 3.6924 | 4.7359 | 0.8841 | - |
3.3333 | 1200 | 3.4517 | 5.0212 | 0.8858 | - |
3.6111 | 1300 | 3.3672 | 5.1527 | 0.8871 | - |
3.8889 | 1400 | 3.3959 | 5.1539 | 0.8877 | - |
-1 | -1 | - | - | - | 0.8684 |
框架版本
- Python:3.10.12
- Sentence Transformers:3.4.0.dev0
- Transformers:4.49.0.dev0
- PyTorch:2.4.1+cu121
- Accelerate:0.34.2
- Datasets:3.2.0
- Tokenizers:0.21.0
📄 許可證
文檔中未提及相關許可證信息。
🔧 技術細節
引用
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98