Bp Tedx100 Xlsr
B
Bp Tedx100 Xlsr
lgrisによって開発
TEDxポルトガル語データセットでファインチューニングされたブラジルポルトガル語Wav2vec 2.0音声認識モデル
ダウンロード数 23
リリース時間 : 3/2/2022
モデル概要
このモデルはWav2vec 2.0アーキテクチャを使用し、TEDxポルトガル語多言語データセットでファインチューニングされ、ブラジルポルトガル語の自動音声認識タスク専用に設計されています。
モデル特徴
マルチデータセットトレーニング
モデルはCETUC、Common Voiceなど複数のポルトガル語音声データセットで評価されています
言語モデルサポート
4-gram言語モデルと組み合わせることで認識精度をさらに向上可能
高性能
複数のテストセットで優れた性能を発揮し、平均単語誤り率(WER)は0.321
モデル能力
ブラジルポルトガル語音声認識
音声からテキストへの変換
複数音声フォーマット処理対応
使用事例
音声文字起こし
講演内容の文字起こし
TEDxポルトガル語講演内容を自動的にテキストに変換
単語誤り率0.222
ビジネス音声文字起こし
ビジネス会議の録音を文字に変換
LaPS BMデータセットで単語誤り率0.169
音声分析
音声内容分析
ポルトガル語音声内容のテキスト分析
🚀 tedx100-xlsr: Wav2vec 2.0 と TEDx データセット
これは、ポルトガル語のTEDxマルチ言語データセットを使用して、ブラジルポルトガル語用に微調整されたWav2vecモデルのデモンストレーションです。
このノートブックでは、このモデルを他の利用可能なブラジルポルトガル語データセットに対してテストしています。
データセット | トレーニング | 検証 | テスト |
---|---|---|---|
CETUC | -- | 5.4時間 | |
Common Voice | -- | 9.5時間 | |
LaPS BM | -- | 0.1時間 | |
MLS | -- | 3.7時間 | |
マルチ言語TEDx (ポルトガル語) | 148.8時間 | -- | 1.8時間 |
SID | -- | 1.0時間 | |
VoxForge | -- | 0.1時間 | |
合計 | 148.8時間 | -- | 21.6時間 |
概要
CETUC | CV | LaPS | MLS | SID | TEDx | VF | 平均 | |
---|---|---|---|---|---|---|---|---|
tedx_100 (以下のデモンストレーション) | 0.138 | 0.369 | 0.169 | 0.165 | 0.794 | 0.222 | 0.395 | 0.321 |
tedx_100 + 4-gram (以下のデモンストレーション) | 0.123 | 0.414 | 0.171 | 0.152 | 0.982 | 0.215 | 0.395 | 0.350 |
🚀 クイックスタート
モデルの概要
このモデルは、ブラジルポルトガル語の音声認識に特化したWav2vec 2.0モデルです。TEDxデータセットを用いて微調整されており、他のブラジルポルトガル語データセットに対してもテストされています。
必要な依存関係のインストール
%%capture
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install datasets
!pip install jiwer
!pip install transformers
!pip install soundfile
!pip install pyctcdecode
!pip install https://github.com/kpu/kenlm/archive/master.zip
データセットのダウンロード
%%capture
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI
!mkdir bp_dataset
!unzip bp_dataset -d bp_dataset/
モデルのテスト
stt = STT(MODEL_NAME)
CETUCデータセットのテスト
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
Common Voiceデータセットのテスト
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
LaPSデータセットのテスト
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
MLSデータセットのテスト
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
SIDデータセットのテスト
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
TEDxデータセットのテスト
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
VoxForgeデータセットのテスト
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
言語モデルを使用したテスト
# !find -type f -name "*.wav" -delete
!rm -rf ~/.cache
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # Wikipediaで学習
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # ブラジルポルトガル語で学習
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa')
CETUCデータセットのテスト (言語モデル使用)
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
Common Voiceデータセットのテスト (言語モデル使用)
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
LaPSデータセットのテスト (言語モデル使用)
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
MLSデータセットのテスト (言語モデル使用)
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
SIDデータセットのテスト (言語モデル使用)
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
TEDxデータセットのテスト (言語モデル使用)
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
VoxForgeデータセットのテスト (言語モデル使用)
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
💻 使用例
基本的な使用法
MODEL_NAME = "lgris/tedx100-xlsr"
高度な使用法
# 言語モデルを使用したバッチ予測
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
📚 ドキュメント
ヘルパー関数
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = 16_000
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
batch["target"] = batch["sentence"]
return batch
def calc_metrics(truths, hypos):
wers = []
mers = []
wils = []
for t, h in zip(truths, hypos):
try:
wers.append(jiwer.wer(t, h))
mers.append(jiwer.mer(t, h))
wils.append(jiwer.wil(t, h))
except: # Empty string?
pass
wer = sum(wers)/len(wers)
mer = sum(mers)/len(mers)
wil = sum(wils)/len(wils)
return wer, mer, wil
def load_data(dataset):
data_files = {'test': f'{dataset}/test.csv'}
dataset = load_dataset('csv', data_files=data_files)["test"]
return dataset.map(map_to_array)
モデルクラス
class STT:
def __init__(self,
model_name,
device='cuda' if torch.cuda.is_available() else 'cpu',
lm=None):
self.model_name = model_name
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.vocab_dict = self.processor.tokenizer.get_vocab()
self.sorted_dict = {
k.lower(): v for k, v in sorted(self.vocab_dict.items(),
key=lambda item: item[1])
}
self.device = device
self.lm = lm
if self.lm:
self.lm_decoder = build_ctcdecoder(
list(self.sorted_dict.keys()),
self.lm
)
def batch_predict(self, batch):
features = self.processor(batch["speech"],
sampling_rate=batch["sampling_rate"][0],
padding=True,
return_tensors="pt")
input_values = features.input_values.to(self.device)
attention_mask = features.attention_mask.to(self.device)
with torch.no_grad():
logits = self.model(input_values, attention_mask=attention_mask).logits
if self.lm:
logits = logits.cpu().numpy()
batch["predicted"] = []
for sample_logits in logits:
batch["predicted"].append(self.lm_decoder.decode(sample_logits))
else:
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = self.processor.batch_decode(pred_ids)
return batch
📄 ライセンス
このプロジェクトは、Apache 2.0ライセンスの下で公開されています。
Voice Activity Detection
MIT
pyannote.audio 2.1バージョンに基づく音声活動検出モデルで、音声中の音声活動時間帯を識別するために使用されます
音声認識
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
これはポルトガル語音声認識タスク向けにファインチューニングされたXLSR-53大規模モデルで、Common Voice 6.1データセットでトレーニングされ、ポルトガル語音声からテキストへの変換をサポートします。
音声認識 その他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
WhisperはOpenAIが提案した先進的な自動音声認識(ASR)および音声翻訳モデルで、500万時間以上の注釈付きデータで訓練されており、強力なデータセット間およびドメイン間の汎化能力を持っています。
音声認識 複数言語対応
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
WhisperはOpenAIが開発した最先端の自動音声認識(ASR)および音声翻訳モデルで、500万時間以上のラベル付きデータでトレーニングされ、ゼロショット設定において強力な汎化能力を発揮します。
音声認識
Transformers 複数言語対応

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングしたロシア語音声認識モデル、16kHzサンプリングレートの音声入力をサポート
音声認識 その他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングした中国語音声認識モデルで、16kHzサンプリングレートの音声入力をサポートしています。
音声認識 中国語
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
facebook/wav2vec2-large-xlsr-53をファインチューニングしたオランダ語音声認識モデルで、Common VoiceとCSS10データセットでトレーニングされ、16kHz音声入力に対応しています。
音声認識 その他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングした日本語音声認識モデルで、16kHzサンプリングレートの音声入力をサポート
音声認識 日本語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
Hugging Faceの事前学習モデルを基にしたテキストと音声の強制アライメントツールで、多言語対応かつメモリ効率に優れています
音声認識
Transformers 複数言語対応

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
音声認識 アラビア語
W
jonatasgrosman
2.3M
37
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98