Wav2vec2 Large Xlsr Georgian
これはfacebook/wav2vec2-large-xlsr-53モデルを基にジョージア語でファインチューニングした自動音声認識(ASR)モデルで、Common Voiceデータセットを使用してトレーニングされました。
ダウンロード数 66
リリース時間 : 3/2/2022
モデル概要
このモデルはジョージア語の音声認識タスクに特化しており、ジョージア語音声をテキストに変換できます。
モデル特徴
ジョージア語専用
ジョージア語に最適化された音声認識モデル
XLSR大規模モデルベース
facebookのwav2vec2-large-xlsr-53モデルをファインチューニング
Common Voiceデータセットでトレーニング
Common Voiceジョージア語データセットを使用してトレーニング
モデル能力
ジョージア語音声認識
音声テキスト変換
使用事例
音声文字起こし
音声コンテンツ文字起こし
ジョージア語音声コンテンツをテキストに変換
43.86% WER(単語誤り率)
音声アシスタント
ジョージア語音声コマンド認識
ジョージア語音声アシスタントや音声制御システムの音声認識コンポーネントとして使用
🚀 Wav2Vec2-Large-XLSR-53-Georgian
このモデルは、facebook/wav2vec2-large-xlsr-53 を Common Voice のグルジア語データでファインチューニングしたものです。このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
🚀 クイックスタート
このモデルを使って音声認識を行う基本的な手順を説明します。
✨ 主な機能
- グルジア語の音声を高精度に認識することができます。
- ベースとなる facebook/wav2vec2-large-xlsr-53 をファインチューニングしているため、汎用性が高いです。
📦 インストール
このモデルを使用するために必要なパッケージをインストールします。
必要パッケージのインストール
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
ノーマライザーのダウンロード
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py
💻 使用例
基本的な使用法
以下のコードは、このモデルを使用して音声認識を行う基本的な例です。
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
出力例
reference: პრეზიდენტობისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატოში გაწევრიანების აქტიური მხარდამჭერი იყო
predicted: პრეზიდენტო ვისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატიში დაწევრიანების აქტიური მხარდამჭერი იყო
---
reference: შესაძლებელია მისი დამონება და მსახურ დემონად გადაქცევა
predicted: შესაძლებელია მისი დამონებათ და მსახურდემანად გადაქცევა
---
reference: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე
predicted: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე
---
reference: ჯოლიმ ოქროს გლობუსისა და კინომსახიობთა გილდიის ნომინაციები მიიღო
predicted: ჯოლი მოქროს გლობუსისა და კინამსახიობთა გილდიის ნომინაციები მიიღო
---
reference: შემდგომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთდა გაიზარდა წიგნადი ფონდი
predicted: შემდღომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთა გაიზარდა წიგნადი ფოვდი
---
reference: აბრამსი დაუკავშირდა მირანდას და ორი თვის განმავლობაში ისინი მუშაობდნენ აღნიშნული სცენის თანმხლებ მელოდიაზე
predicted: აბრამში და უკავშირდა მირანდეს და ორითვის განმავლობაში ისინი მუშაობდნენა აღნიშნულის ჩენის მთამხლევით მელოდიაში
---
reference: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბორისტული პარტიის ლიდერი ჯერემი კორბინი
predicted: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბურისტული პარტიის ლიდერი ჯერემი კორვინი
---
reference: ორი
predicted: ორი
---
reference: მას შემდეგ იგი კოლექტივის მუდმივი წევრია
predicted: მას შემდეგ იგი კოლექტივის ფუდ მივი წევრია
---
reference: აზერბაიჯანულ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი
predicted: აზერგვოიჯანალ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი
---
reference: ბრონქსში ჯერომის ავენიუ ჰყოფს გამჭოლ ქუჩებს აღმოსავლეთ და დასავლეთ ნაწილებად
predicted: რონგში დერომიწ ავენილ პოფს გამ დოლფურქებს აღმოსავლეთ და დასავლეთ ნაწილებად
---
reference: ჰაერი არის ჟანგბადის ის ძირითადი წყარო რომელსაც საჭიროებს ყველა ცოცხალი ორგანიზმი
predicted: არი არის ჯამუბადესის ძირითადი წყარო რომელსაც საჭიროოებს ყველა ცოცხალი ორგანიზმი
---
reference: ჯგუფი უმეტესწილად ასრულებს პოპმუსიკის ჟანრის სიმღერებს
predicted: ჯგუფიუმეტესწევად ასრულებს პოპნუსიკის ჟანრის სიმრერებს
---
reference: ბაბილინა მუდმივად ცდილობდა შესაძლებლობების ფარგლებში მიეღო ცოდნა და ახალი ინფორმაცია
predicted: ბაბილინა მუდმივა ცდილობდა შესაძლებლობების ფარგლებში მიიღო ცოტნა და ახალი ინფორმაცია
---
reference: მრევლის რწმენით რომელი ჯგუფიც გაიმარჯვებდა მთელი წლის მანძილზე სიუხვე და ბარაქა არ მოაკლდებოდა
predicted: მრევრის რწმენით რომელიჯგუფის გაიმარჯვებდა მთელიჭლის მანძილზა სიუყვეტაბარაქა არ მოაკლდებოდა
---
reference: ნინო ჩხეიძეს განსაკუთრებული ღვაწლი მიუძღვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში
predicted: მინო ჩხეიძეს განსაკუთრებული ღოვაწლი მიოცხვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში
---
reference: იგი სამი დიალექტისგან შედგება
predicted: იგი სამი დიალეთის გან შედგება
---
reference: ფორმით სირაქლემებს წააგვანან
predicted: ომიცი რაქლემებს ააგვანამ
---
reference: დანი დაიბადა კოლუმბუსში ოჰაიოში
predicted: დონი დაიბაოდა კოლუმბუსში ოხვაიოში
---
reference: მშენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში
predicted: შენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში
---
評価方法
このモデルの評価を行うためのコード例です。
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
テスト結果
- WER: 43.86%
📚 ドキュメント
学習について
Common Voice の train
と validation
データセットを使用して学習を行いました。
質問やサポート
質問がある場合は、Wav2Vec のリポジトリに GitHub の issue を投稿してください。
📄 ライセンス
このモデルは Apache-2.0 ライセンスの下で提供されています。
Voice Activity Detection
MIT
pyannote.audio 2.1バージョンに基づく音声活動検出モデルで、音声中の音声活動時間帯を識別するために使用されます
音声認識
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
これはポルトガル語音声認識タスク向けにファインチューニングされたXLSR-53大規模モデルで、Common Voice 6.1データセットでトレーニングされ、ポルトガル語音声からテキストへの変換をサポートします。
音声認識 その他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
WhisperはOpenAIが提案した先進的な自動音声認識(ASR)および音声翻訳モデルで、500万時間以上の注釈付きデータで訓練されており、強力なデータセット間およびドメイン間の汎化能力を持っています。
音声認識 複数言語対応
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
WhisperはOpenAIが開発した最先端の自動音声認識(ASR)および音声翻訳モデルで、500万時間以上のラベル付きデータでトレーニングされ、ゼロショット設定において強力な汎化能力を発揮します。
音声認識
Transformers 複数言語対応

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングしたロシア語音声認識モデル、16kHzサンプリングレートの音声入力をサポート
音声認識 その他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングした中国語音声認識モデルで、16kHzサンプリングレートの音声入力をサポートしています。
音声認識 中国語
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
facebook/wav2vec2-large-xlsr-53をファインチューニングしたオランダ語音声認識モデルで、Common VoiceとCSS10データセットでトレーニングされ、16kHz音声入力に対応しています。
音声認識 その他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングした日本語音声認識モデルで、16kHzサンプリングレートの音声入力をサポート
音声認識 日本語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
Hugging Faceの事前学習モデルを基にしたテキストと音声の強制アライメントツールで、多言語対応かつメモリ効率に優れています
音声認識
Transformers 複数言語対応

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
音声認識 アラビア語
W
jonatasgrosman
2.3M
37
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98