🚀 Wav2Vec2-Large-XLSR-53-Basque
このモデルは、Common Voice を使用してバスク語で微調整された facebook/wav2vec2-large-xlsr-53 です。このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
🚀 クイックスタート
このモデルは、言語モデルを使用せずに直接利用できます。
💻 使用例
基本的な使用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
評価
このモデルは、Common Voiceのバスク語テストデータで以下のように評価できます。
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
テスト結果: 18.272625%
学習
学習には、Common Voiceの train
と validation
データセットが使用されました。学習に使用されたスクリプトは、近い将来ここに公開される予定です。
謝辞
V-100インスタンスへのアクセスを提供してくれた OVH team に深く感謝します。彼らの助けがなければ、微調整は不可能でした!また、微調整スクリプトの作成に協力してくれた Manuel Romero (mrm8488) にも感謝します!
📄 ライセンス
このモデルは、Apache-2.0ライセンスの下で提供されています。
モデル情報
属性 |
详情 |
モデルタイプ |
音声認識モデル(自動音声認識) |
学習データ |
Common Voice(バスク語) |
モデル名 |
XLSR Wav2Vec2 Basque Stefan Schweter |
評価指標 (Test WER) |
18.272625 |