đ Wav2Vec2-Large-XLSR-53-Basque
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Basque, leveraging the Common Voice dataset. It's designed for speech recognition tasks.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Basque using the Common Voice. When using this model, ensure that your speech input is sampled at 16kHz.
⨠Features
- Language: Basque
- Datasets: Utilizes the Common Voice dataset
- Tags: Applicable for audio, automatic - speech - recognition, speech, and xlsr - fine - tuning - week
- License: Licensed under Apache 2.0
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\â\\\\%\\\\â\\\\â\\\\īŋŊ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result
The model achieved a Word Error Rate (WER) of 18.272625% on the test dataset.
đ Documentation
Training
The Common Voice train
and validation
datasets were used for training. The training script will hopefully be available soon.
Acknowledgements
Many thanks to the OVH team for providing access to a V - 100 instance. Without their help, fine - tuning would not be possible! I would also thank Manuel Romero (mrm8488) for helping with the fine - tuning script!
đ License
This project is licensed under the Apache 2.0 license.
Property |
Details |
Model Type |
Wav2Vec2 - Large - XLSR - 53 - Basque |
Training Data |
Common Voice (train and validation datasets) |
Test Dataset |
Common Voice eu (test dataset) |
Test WER |
18.272625 |
License |
Apache - 2.0 |