🚀 allnli-GroNLP-bert-base-dutch-cased
このモデルはsentence-transformersモデルです。文章や段落を768次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。
🚀 クイックスタート
このモデルを使用するには、いくつかの方法があります。以下に詳細を説明します。
✨ 主な機能
- 文章や段落を768次元の密ベクトル空間にマッピングします。
- クラスタリングや意味検索などのタスクに使用できます。
📦 インストール
sentence-transformersをインストールすることで、このモデルを簡単に使用できます。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
embeddings = model.encode(sentences)
print(embeddings)
高度な使用法
sentence-transformersを使用せずに、このモデルを使用することもできます。まず、入力をTransformerモデルに通し、その後、文脈化された単語埋め込みに対して適切なプーリング操作を適用する必要があります。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
model = AutoModel.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 ドキュメント
評価結果
このモデルの自動評価については、Sentence Embeddings Benchmarkを参照してください: https://seb.sbert.net
学習
このモデルは以下のパラメータで学習されました。
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
長さ4388、パラメータ:
{'batch_size': 128}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
パラメータ:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()メソッドのパラメータ:
{
"epochs": 1,
"evaluation_steps": 438,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 439,
"weight_decay": 0.01
}
完全なモデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用と著者
このモデルに関する詳細な情報は、sentence-transformersを参照してください。