🚀 t5-end2end-question-generation
このモデルは、t5-base を squad データセットでファインチューニングしたもので、文脈に基づいて質問を生成します。
👉 同じことを行うために t5 モデルをファインチューニングする方法を学びたい場合は、この チュートリアル を参照してください。
例えば:
Context: "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace."
Questions:
Who created Python?,
When was Python first released?
What is Python's design philosophy?
評価セットでは、以下の結果を達成しています:
🚀 クイックスタート
from transformers import T5ForConditionalGeneration, T5TokenizerFast
hfmodel = T5ForConditionalGeneration.from_pretrained("ThomasSimonini/t5-end2end-question-generation")
text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791."
def run_model(input_string, **generator_args):
generator_args = {
"max_length": 256,
"num_beams": 4,
"length_penalty": 1.5,
"no_repeat_ngram_size": 3,
"early_stopping": True,
}
input_string = "generate questions: " + input_string + " </s>"
input_ids = tokenizer.encode(input_string, return_tensors="pt")
res = hfmodel.generate(input_ids, **generator_args)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
output = [item.split("<sep>") for item in output]
return output
run_model(text)
=> [['When did the National Constituent Assembly abolish feudal privileges?',
' Who drafted the Declaration of the Rights of Man and of the Citizen?',
' When was the Constitutional Monarchy established?',
' What was the name of the Declaration that paved the way to a constitutional monarchy?',
'']]
主な機能
このモデルは、squad データセットでファインチューニングされた T5 ベースのモデルで、文脈に基づいて質問を自動生成することができます。
技術詳細
学習ハイパーパラメータ
学習中に使用されたハイパーパラメータは以下の通りです:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
学習結果
Training Loss |
Epoch |
Step |
Validation Loss |
2.5834 |
0.34 |
100 |
1.9107 |
1.9642 |
0.68 |
200 |
1.7227 |
1.8526 |
1.02 |
300 |
1.6627 |
1.7383 |
1.36 |
400 |
1.6354 |
1.7223 |
1.69 |
500 |
1.6154 |
1.6871 |
2.03 |
600 |
1.6096 |
1.6309 |
2.37 |
700 |
1.6048 |
1.6242 |
2.71 |
800 |
1.5923 |
1.6226 |
3.05 |
900 |
1.5855 |
1.5645 |
3.39 |
1000 |
1.5874 |
1.5705 |
3.73 |
1100 |
1.5822 |
1.5543 |
4.07 |
1200 |
1.5817 |
1.5284 |
4.41 |
1300 |
1.5841 |
1.5275 |
4.75 |
1400 |
1.5741 |
1.5269 |
5.08 |
1500 |
1.5715 |
1.5079 |
5.42 |
1600 |
1.5701 |
1.4876 |
5.76 |
1700 |
1.5754 |
1.498 |
6.1 |
1800 |
1.5699 |
1.4852 |
6.44 |
1900 |
1.5693 |
1.4776 |
6.78 |
2000 |
1.5691 |
フレームワークバージョン
- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
📄 ライセンス
このモデルは、Apache-2.0 ライセンスの下で提供されています。