🚀 MMARCO-bert-base-italian-uncased
このモデルはsentence-transformersを使用しており、文章や段落を768次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。
🚀 クイックスタート
📦 インストール
sentence-transformersをインストールすると、このモデルを簡単に使用できます。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer, util
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
model = SentenceTransformer('nickprock/mmarco-bert-base-italian-uncased')
query_emb = model.encode(query)
doc_emb = model.encode(docs)
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
for doc, score in doc_score_pairs:
print(score, doc)
高度な使用法
sentence-transformersを使用せずに、このモデルを使用することもできます。まず、入力をTransformerモデルに通し、その後、文脈化された単語埋め込みの上に適切なプーリング操作を適用する必要があります。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode(texts):
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return embeddings
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
model = AutoModel.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
query_emb = encode(query)
doc_emb = encode(docs)
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
print("Query:", query)
for doc, score in doc_score_pairs:
print(score, doc)
📚 ドキュメント
評価結果
このモデルの自動評価については、Sentence Embeddings Benchmarkを参照してください: https://seb.sbert.net
学習
このモデルは以下のパラメータで学習されました。
DataLoader:
torch.utils.data.dataloader.DataLoader
(長さ6250) で、以下のパラメータが使用されています。
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失関数:
sentence_transformers.losses.TripletLoss.TripletLoss
で、以下のパラメータが使用されています。
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
fit()
メソッドのパラメータ:
{
"epochs": 10,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 1500,
"warmup_steps": 6250,
"weight_decay": 0.01
}
モデルのアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 ライセンス
このモデルはMITライセンスの下で提供されています。