Model Overview
Model Features
Model Capabilities
Use Cases
đ Qwen3-Reranker-4B
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks, offering high performance and flexibility.
đ Quick Start
The Qwen3 Embedding series is a powerful tool for text embedding and ranking tasks. For detailed information, including benchmark evaluation, hardware requirements, and inference performance, please refer to our blog and GitHub.
⨠Features
Overall Features of Qwen3 Embedding Series
- Exceptional Versatility: The embedding model has achieved state - of - the - art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks No.1 in the MTEB multilingual leaderboard (as of June 5, 2025, score 70.58), while the reranking model excels in various text retrieval scenarios.
- Comprehensive Flexibility: It offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user - defined instructions to enhance performance for specific tasks, languages, or scenarios.
- Multilingual Capability: Thanks to the multilingual capabilities of Qwen3 models, it offers support for over 100 languages, including various programming languages, and provides robust multilingual, cross - lingual, and code retrieval capabilities.
Features of Qwen3 - Reranker - 4B
- Model Type: Text Reranking
- Supported Languages: 100+ Languages
- Number of Parameters: 4B
- Context Length: 32k
đĻ Installation
There is no specific installation content in the original README. If you want to use the model, you need to ensure that the corresponding libraries (transformers
, vllm
etc.) meet the version requirements as mentioned in the usage section.
đģ Usage Examples
Transformers Usage
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-4B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-4B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-4B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)
vLLM Usage
# Requires vllm>=0.8.5
import logging
from typing import Dict, Optional, List
import json
import logging
import torch
from transformers import AutoTokenizer, is_torch_npu_available
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import destroy_model_parallel
import gc
import math
from vllm.inputs.data import TokensPrompt
def format_instruction(instruction, query, doc):
text = [
{"role": "system", "content": "Judge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\"."},
{"role": "user", "content": f"<Instruct>: {instruction}\n\n<Query>: {query}\n\n<Document>: {doc}"}
]
return text
def process_inputs(pairs, instruction, max_length, suffix_tokens):
messages = [format_instruction(instruction, query, doc) for query, doc in pairs]
messages = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=False, enable_thinking=False
)
messages = [ele[:max_length] + suffix_tokens for ele in messages]
messages = [TokensPrompt(prompt_token_ids=ele) for ele in messages]
return messages
def compute_logits(model, messages, sampling_params, true_token, false_token):
outputs = model.generate(messages, sampling_params, use_tqdm=False)
scores = []
for i in range(len(outputs)):
final_logits = outputs[i].outputs[0].logprobs[-1]
token_count = len(outputs[i].outputs[0].token_ids)
if true_token not in final_logits:
true_logit = -10
else:
true_logit = final_logits[true_token].logprob
if false_token not in final_logits:
false_logit = -10
else:
false_logit = final_logits[false_token].logprob
true_score = math.exp(true_logit)
false_score = math.exp(false_logit)
score = true_score / (true_score + false_score)
scores.append(score)
return scores
number_of_gpu = torch.cuda.device_count()
tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Reranker-4B')
model = LLM(model='Qwen/Qwen3-Reranker-4B', tensor_parallel_size=number_of_gpu, max_model_len=10000, enable_prefix_caching=True, gpu_memory_utilization=0.8)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
max_length=8192
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
true_token = tokenizer("yes", add_special_tokens=False).input_ids[0]
false_token = tokenizer("no", add_special_tokens=False).input_ids[0]
sampling_params = SamplingParams(temperature=0,
max_tokens=1,
logprobs=20,
allowed_token_ids=[true_token, false_token],
)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = list(zip(queries, documents))
inputs = process_inputs(pairs, task, max_length-len(suffix_tokens), suffix_tokens)
scores = compute_logits(model, inputs, sampling_params, true_token, false_token)
print('scores', scores)
destroy_model_parallel()
â ī¸ Important Note
With Transformers versions earlier than 4.51.0, you may encounter the following error:
KeyError: 'qwen3'
đĄ Usage Tip
We recommend that developers customize the
instruct
according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using aninstruct
on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.
đ Documentation
Qwen3 Embedding Series Model list
Property | Details |
---|---|
Model Type | Text Reranking |
Supported Languages | 100+ Languages |
Number of Parameters | 4B |
Context Length | 32k |
Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware |
---|---|---|---|---|---|---|---|
Text Embedding | Qwen3-Embedding-0.6B | 0.6B | 28 | 32K | 1024 | Yes | Yes |
Text Embedding | Qwen3-Embedding-4B | 4B | 36 | 32K | 2560 | Yes | Yes |
Text Embedding | Qwen3-Embedding-8B | 8B | 36 | 32K | 4096 | Yes | Yes |
Text Reranking | Qwen3-Reranker-0.6B | 0.6B | 28 | 32K | - | - | Yes |
Text Reranking | Qwen3-Reranker-4B | 4B | 36 | 32K | - | - | Yes |
Text Reranking | Qwen3-Reranker-8B | 8B | 36 | 32K | - | - | Yes |
Note:
MRL Support
indicates whether the embedding model supports custom dimensions for the final embedding.Instruction Aware
notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.- Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.
Evaluation
Model | Param | MTEB - R | CMTEB - R | MMTEB - R | MLDR | MTEB - Code | FollowIR |
---|---|---|---|---|---|---|---|
Qwen3-Embedding-0.6B | 0.6B | 61.82 | 71.02 | 64.64 | 50.26 | 75.41 | 5.09 |
Jina-multilingual-reranker-v2-base | 0.3B | 58.22 | 63.37 | 63.73 | 39.66 | 58.98 | -0.68 |
gte-multilingual-reranker-base | 0.3B | 59.51 | 74.08 | 59.44 | 66.33 | 54.18 | -1.64 |
BGE-reranker-v2-m3 | 0.6B | 57.03 | 72.16 | 58.36 | 59.51 | 41.38 | -0.01 |
Qwen3-Reranker-0.6B | 0.6B | 65.80 | 71.31 | 66.36 | 67.28 | 73.42 | 5.41 |
Qwen3-Reranker-4B | 4B | 69.76 | 75.94 | 72.74 | 69.97 | 81.20 | 14.84 |
Qwen3-Reranker-8B | 8B | 69.02 | 77.45 | 72.94 | 70.19 | 81.22 | 8.05 |
Note:
- Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2), MTEB(cmn, v1), MMTEB and MTEB (Code), which are MTEB - R, CMTEB - R, MMTEB - R and MTEB - Code.
- All scores are our runs based on the top - 100 candidates retrieved by dense embedding model Qwen3-Embedding-0.6B.
đ License
The project is licensed under the Apache - 2.0 license.
đ Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwen3-embedding,
title = {Qwen3-Embedding},
url = {https://qwenlm.github.io/blog/qwen3/},
author = {Qwen Team},
month = {May},
year = {2025}
}





