🚀 PyLate Model Based on Alibaba-NLP/gte-modernbert-base
This is a PyLate model based on Alibaba-NLP/gte-modernbert-base, which can be used for sentence similarity tasks and feature extraction. It has been trained with a dataset size of 640000 and uses Distillation loss.
✨ Features
- Support for multiple tags such as ColBERT, PyLate, sentence-transformers, etc.
- Applicable for sentence similarity and feature extraction tasks.
- Trained with a large dataset and uses Distillation loss.
📚 Documentation
Model Information
Property |
Details |
Model Type |
PyLate model based on Alibaba-NLP/gte-modernbert-base |
Training Data |
Dataset size: 640000 |
Loss Function |
Distillation |
Pipeline Tag |
sentence-similarity |
Library Name |
PyLate |
Metrics |
MaxSim_accuracy@1, MaxSim_accuracy@3, MaxSim_accuracy@5, MaxSim_accuracy@10, MaxSim_precision@1, MaxSim_precision@3, MaxSim_precision@5, MaxSim_precision@10, MaxSim_recall@1, MaxSim_recall@3, MaxSim_recall@5, MaxSim_recall@10, MaxSim_ndcg@10, MaxSim_mrr@10, MaxSim_map@100 |
Results on Different Datasets
The model has been evaluated on multiple datasets for the py-late-information-retrieval task. Here are the detailed results:
NanoClimateFEVER
Metric |
Value |
Maxsim Accuracy@1 |
0.36 |
Maxsim Accuracy@3 |
0.62 |
Maxsim Accuracy@5 |
0.78 |
Maxsim Accuracy@10 |
0.86 |
Maxsim Precision@1 |
0.36 |
Maxsim Precision@3 |
0.2333333333333333 |
Maxsim Precision@5 |
0.20799999999999996 |
Maxsim Precision@10 |
0.12799999999999997 |
Maxsim Recall@1 |
0.18333333333333332 |
Maxsim Recall@3 |
0.289 |
Maxsim Recall@5 |
0.41566666666666663 |
Maxsim Recall@10 |
0.49566666666666664 |
Maxsim Ndcg@10 |
0.41477895139843374 |
Maxsim Mrr@10 |
0.526579365079365 |
Maxsim Map@100 |
0.33473812643311207 |
NanoDBPedia
Metric |
Value |
Maxsim Accuracy@1 |
0.88 |
Maxsim Accuracy@3 |
0.94 |
Maxsim Accuracy@5 |
0.96 |
Maxsim Accuracy@10 |
0.98 |
Maxsim Precision@1 |
0.88 |
Maxsim Precision@3 |
0.7133333333333334 |
Maxsim Precision@5 |
0.6560000000000001 |
Maxsim Precision@10 |
0.572 |
Maxsim Recall@1 |
0.11798996781634019 |
Maxsim Recall@3 |
0.23074158968531658 |
Maxsim Recall@5 |
0.2961618059276896 |
Maxsim Recall@10 |
0.4145532152487909 |
Maxsim Ndcg@10 |
0.7295518860528665 |
Maxsim Mrr@10 |
0.9168571428571428 |
Maxsim Map@100 |
0.5883869727264871 |
NanoFEVER
Metric |
Value |
Maxsim Accuracy@1 |
0.92 |
Maxsim Accuracy@3 |
0.98 |
Maxsim Accuracy@5 |
0.98 |
Maxsim Accuracy@10 |
1.0 |
Maxsim Precision@1 |
0.92 |
Maxsim Precision@3 |
0.35999999999999993 |
Maxsim Precision@5 |
0.21599999999999994 |
Maxsim Precision@10 |
0.10999999999999999 |
Maxsim Recall@1 |
0.8566666666666667 |
Maxsim Recall@3 |
0.96 |
Maxsim Recall@5 |
0.96 |
Maxsim Recall@10 |
0.98 |
Maxsim Ndcg@10 |
0.9451911044041129 |
Maxsim Mrr@10 |
0.9522222222222223 |
Maxsim Map@100 |
0.9270501207729468 |
NanoFiQA2018
Metric |
Value |
Maxsim Accuracy@1 |
0.56 |
Maxsim Accuracy@3 |
0.66 |
Maxsim Accuracy@5 |
0.74 |
Maxsim Accuracy@10 |
0.8 |
Maxsim Precision@1 |
0.56 |
Maxsim Precision@3 |
0.32666666666666666 |
Maxsim Precision@5 |
0.25599999999999995 |
Maxsim Precision@10 |
0.15199999999999997 |
Maxsim Recall@1 |
0.30924603174603177 |
Maxsim Recall@3 |
0.47840476190476194 |
Maxsim Recall@5 |
0.5751746031746031 |
Maxsim Recall@10 |
0.6411984126984127 |
Maxsim Ndcg@10 |
0.5669909336903424 |
Maxsim Mrr@10 |
0.6359444444444444 |
Maxsim Map@100 |
0.5031998196513616 |
NanoHotpotQA
Metric |
Value |
Maxsim Accuracy@1 |
0.92 |
Maxsim Accuracy@3 |
1.0 |
Maxsim Accuracy@5 |
1.0 |
Maxsim Accuracy@10 |
1.0 |
Maxsim Precision@1 |
0.92 |
Maxsim Precision@3 |
0.58 |
Maxsim Precision@5 |
0.35999999999999993 |
Maxsim Precision@10 |
0.18599999999999994 |
Maxsim Recall@1 |
0.46 |
Maxsim Recall@3 |
0.87 |
Maxsim Recall@5 |
0.9 |
Maxsim Recall@10 |
0.93 |
Maxsim Ndcg@10 |
0.9011747095216048 |
Maxsim Mrr@10 |
0.96 |
Maxsim Map@100 |
0.8591508921772081 |
NanoMSMARCO
Metric |
Value |
Maxsim Accuracy@1 |
0.54 |
Maxsim Accuracy@3 |
0.68 |
Maxsim Accuracy@5 |
0.74 |
Maxsim Accuracy@10 |
0.92 |
Maxsim Precision@1 |
0.54 |
Maxsim Precision@3 |
0.22666666666666666 |
Maxsim Precision@5 |
0.14800000000000002 |
Maxsim Precision@10 |
0.092 |
Maxsim Recall@1 |
0.54 |
Maxsim Recall@3 |
0.68 |
Maxsim Recall@5 |
0.74 |
Maxsim Recall@10 |
0.92 |
Maxsim Ndcg@10 |
0.7088869908160952 |
Maxsim Mrr@10 |
0.6446507936507936 |
Maxsim Map@100 |
0.6496349206349206 |
NanoNFCorpus
Metric |
Value |
Maxsim Accuracy@1 |
0.56 |
Maxsim Accuracy@3 |
0.68 |
Maxsim Accuracy@5 |
0.74 |
Maxsim Accuracy@10 |
0.76 |
Maxsim Precision@1 |
0.56 |
Maxsim Precision@3 |
0.43333333333333335 |
Maxsim Precision@5 |
0.39199999999999996 |
Maxsim Precision@10 |
0.304 |
Maxsim Recall@1 |
0.06640185752724687 |
Maxsim Recall@3 |
0.10198877096622012 |
Maxsim Recall@5 |
0.12839743828750172 |
Maxsim Recall@10 |
0.15658989769166 |
Maxsim Ndcg@10 |
0.3957047406068243 |
Maxsim Mrr@10 |
0.627 |
Maxsim Map@100 |
0.1917924344366858 |
NanoNQ
Metric |
Value |
Maxsim Accuracy@1 |
0.64 |
Maxsim Accuracy@3 |
0.82 |
Maxsim Accuracy@5 |
0.86 |
Maxsim Accuracy@10 |
0.9 |
Maxsim Precision@1 |
0.64 |
Maxsim Precision@3 |
0.2866666666666666 |
Maxsim Precision@5 |
0.17999999999999997 |
Maxsim Precision@10 |
0.1 |
Maxsim Recall@1 |
0.61 |
Maxsim Recall@3 |
0.78 |
Maxsim Recall@5 |
0.82 |
Maxsim Recall@10 |
0.88 |
Maxsim Ndcg@10 |
0.7645227466201794 |
Maxsim Mrr@10 |
0.7390000000000001 |
Maxsim Map@100 |
0.7239323294755705 |
NanoQuoraRetrieval
Metric |
Value |
Maxsim Accuracy@1 |
0.96 |
Maxsim Accuracy@3 |
1.0 |
Maxsim Accuracy@5 |
1.0 |
Maxsim Accuracy@10 |
1.0 |
Maxsim Precision@1 |
0.96 |
Maxsim Precision@3 |
0.4 |
Maxsim Precision@5 |
0.25599999999999995 |
Maxsim Precision@10 |
0.13399999999999998 |
Maxsim Recall@1 |
0.8473333333333334 |
Maxsim Recall@3 |
0.9453333333 |
📄 License
This project is licensed under the Apache-2.0 license.