Bge Reranker Ft
This is a cross-encoder model fine-tuned from BAAI/bge-reranker-base, designed for scoring text pairs, suitable for text reordering and semantic search tasks.
Downloads 70
Release Time : 5/5/2025
Model Overview
This model is fine-tuned from BAAI/bge-reranker-base using the sentence-transformers library. It can compute similarity scores for text pairs, primarily used in text reordering and semantic search scenarios.
Model Features
Efficient Text Pair Scoring
Capable of quickly computing relevance scores between two texts, suitable for large-scale text ranking scenarios.
Fine-tuned from BGE-reranker
Fine-tuned on BAAI/bge-reranker-base, inheriting the excellent performance of the original model.
Multiple Negative Samples Training
Trained using multiple negative sample ranking loss, enhancing the model's discriminative ability.
Model Capabilities
Text Similarity Calculation
Semantic Search
Text Reordering
Use Cases
Information Retrieval
Search Engine Result Reordering
Reorders search engine results to improve the ranking of the most relevant outcomes.
Name Matching
Name Variant Recognition
Identifies whether different written forms of a name refer to the same person, such as 'zach koh yong liang' and 'yong liang koh zach'.
đ CrossEncoder based on BAAI/bge-reranker-base
This is a Cross Encoder model that computes scores for text pairs, useful for text reranking and semantic search.
đ Quick Start
This is a Cross Encoder model finetuned from BAAI/bge-reranker-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
⨠Features
- Computes scores for text pairs.
- Can be used for text reranking and semantic search.
đĻ Installation
First install the Sentence Transformers library:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
from sentence_transformers import CrossEncoder
# Download from the đ¤ Hub
model = CrossEncoder("foochun/bge-reranker-ft")
# Get scores for pairs of texts
pairs = [
['zach koh yong liang', 'yong liang koh zach'],
['zulkifli bin mohamad', 'zulkifli bin muhammad'],
['rahman bin mohd rashid', 'rahman mohammed rashid'],
['mohd syukri bin bakar', 'muhd syukri bakar'],
['carmen tan fang kiat', 'tan fang kiat'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'zach koh yong liang',
[
'yong liang koh zach',
'zulkifli bin muhammad',
'rahman mohammed rashid',
'muhd syukri bakar',
'tan fang kiat',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
đ Documentation
Model Details
Model Description
Property | Details |
---|---|
Model Type | Cross Encoder |
Base model | BAAI/bge-reranker-base |
Maximum Sequence Length | 512 tokens |
Number of Output Labels | 1 label |
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Training Details
Training Dataset
Unnamed Dataset
- Size: 72,905 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
| | query | pos | neg |
|:--------|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details |
- min: 9 characters
- mean: 19.91 characters
- max: 45 characters
- min: 9 characters
- mean: 17.64 characters
- max: 40 characters
- min: 9 characters
- mean: 17.95 characters
- max: 37 characters
- Samples:
| query | pos | neg |
|:-------------------------------------------|:-------------------------------------|:-----------------------------------|
|
sim hong soon
|sim hong soon
|sim soon hong
| |raja mariam binti raja sharif
|raja mariam raja sharif
|zuraidah binti dollah
| |saw ann fui
|fui saw ann
|ann saw fui
| - Loss:
MultipleNegativesRankingLoss
with these parameters:
{
"scale": 10.0,
"num_negatives": 4,
"activation_fn": "torch.nn.modules.activation.Sigmoid"
}
Evaluation Dataset
Unnamed Dataset
- Size: 10,415 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
| | query | pos | neg |
|:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details |
- min: 9 characters
- mean: 19.95 characters
- max: 43 characters
- min: 9 characters
- mean: 17.8 characters
- max: 42 characters
- min: 8 characters
- mean: 18.33 characters
- max: 36 characters
- Samples:
| query | pos | neg |
|:------------------------------------|:------------------------------------|:---------------------------------|
|
zach koh yong liang
|yong liang koh zach
|liang yong koh zach
| |zulkifli bin mohamad
|zulkifli bin muhammad
|razak bin ibrahim
| |rahman bin mohd rashid
|rahman mohammed rashid
|fauzi bin mohd
| - Loss:
MultipleNegativesRankingLoss
with these parameters:
{
"scale": 10.0,
"num_negatives": 4,
"activation_fn": "torch.nn.modules.activation.Sigmoid"
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-05warmup_ratio
: 0.1seed
: 12fp16
: Truedataloader_num_workers
: 4load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0009 | 1 | 0.5117 |
0.8772 | 1000 | 0.0955 |
1.7544 | 2000 | 0.005 |
2.6316 | 3000 | 0.0039 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
đ License
No license information provided.
đ Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models
Š 2025AIbase