Embeddingmodlebgelargeenv1.5
E
Embeddingmodlebgelargeenv1.5
Developed by binqiangliu
BGE Large English v1.5 is a high-performance sentence transformer model, focusing on sentence feature extraction and similarity computation.
Downloads 19
Release Time : 11/19/2023
Model Overview
This model is primarily used for sentence embedding and text similarity computation, supporting various natural language processing tasks such as classification, clustering, and retrieval.
Model Features
High-Performance Sentence Embedding
Capable of generating high-quality sentence embeddings suitable for various downstream tasks.
Multitask Support
Supports multiple natural language processing tasks such as classification, clustering, and retrieval.
High Accuracy
Outstanding performance in multiple benchmarks, e.g., achieving 92.42% accuracy in AmazonPolarity classification.
Model Capabilities
Sentence feature extraction
Text similarity computation
Text classification
Text clustering
Information retrieval
Use Cases
E-commerce
Product Review Classification
Sentiment polarity classification for Amazon product reviews.
Accuracy 92.42%, F1 score 92.39%
Counterfactual Review Detection
Identifying counterfactual reviews on the Amazon platform.
Accuracy 75.85%, F1 score 69.69%
Academic Research
Paper Clustering
Topic clustering for arXiv and biorxiv papers.
V-measure reached 48.57% and 43.19% respectively
Q&A Systems
Technical Q&A Retrieval
Question retrieval on the CQADupstack technical Q&A platform.
Average precision@10 reached 36.66%
🚀 bge-large-en-v1.5
This is a model related to sentence-transformers, which can be used for feature extraction, sentence similarity calculation, etc. It has achieved certain results in multiple tasks of MTEB.
📚 Documentation
Tags
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
Model Results
Task Type | Dataset | Metrics | Value |
---|---|---|---|
Classification | MTEB AmazonCounterfactualClassification (en) | accuracy | 75.8507462686567 |
Classification | MTEB AmazonCounterfactualClassification (en) | ap | 38.566457320228245 |
Classification | MTEB AmazonCounterfactualClassification (en) | f1 | 69.69386648043475 |
Classification | MTEB AmazonPolarityClassification | accuracy | 92.416675 |
Classification | MTEB AmazonPolarityClassification | ap | 89.1928861155922 |
Classification | MTEB AmazonPolarityClassification | f1 | 92.39477019574215 |
Classification | MTEB AmazonReviewsClassification (en) | accuracy | 48.175999999999995 |
Classification | MTEB AmazonReviewsClassification (en) | f1 | 47.80712792870253 |
Retrieval | MTEB ArguAna | map_at_1 | 40.184999999999995 |
Retrieval | MTEB ArguAna | map_at_10 | 55.654 |
Retrieval | MTEB ArguAna | map_at_100 | 56.25 |
Retrieval | MTEB ArguAna | map_at_1000 | 56.255 |
Retrieval | MTEB ArguAna | map_at_3 | 51.742999999999995 |
Retrieval | MTEB ArguAna | map_at_5 | 54.129000000000005 |
Retrieval | MTEB ArguAna | mrr_at_1 | 40.967 |
Retrieval | MTEB ArguAna | mrr_at_10 | 55.96 |
Retrieval | MTEB ArguAna | mrr_at_100 | 56.54900000000001 |
Retrieval | MTEB ArguAna | mrr_at_1000 | 56.554 |
Retrieval | MTEB ArguAna | mrr_at_3 | 51.980000000000004 |
Retrieval | MTEB ArguAna | mrr_at_5 | 54.44 |
Retrieval | MTEB ArguAna | ndcg_at_1 | 40.184999999999995 |
Retrieval | MTEB ArguAna | ndcg_at_10 | 63.542 |
Retrieval | MTEB ArguAna | ndcg_at_100 | 65.96499999999999 |
Retrieval | MTEB ArguAna | ndcg_at_1000 | 66.08699999999999 |
Retrieval | MTEB ArguAna | ndcg_at_3 | 55.582 |
Retrieval | MTEB ArguAna | ndcg_at_5 | 59.855000000000004 |
Retrieval | MTEB ArguAna | precision_at_1 | 40.184999999999995 |
Retrieval | MTEB ArguAna | precision_at_10 | 8.841000000000001 |
Retrieval | MTEB ArguAna | precision_at_100 | 0.987 |
Retrieval | MTEB ArguAna | precision_at_1000 | 0.1 |
Retrieval | MTEB ArguAna | precision_at_3 | 22.238 |
Retrieval | MTEB ArguAna | precision_at_5 | 15.405 |
Retrieval | MTEB ArguAna | recall_at_1 | 40.184999999999995 |
Retrieval | MTEB ArguAna | recall_at_10 | 88.407 |
Retrieval | MTEB ArguAna | recall_at_100 | 98.72 |
Retrieval | MTEB ArguAna | recall_at_1000 | 99.644 |
Retrieval | MTEB ArguAna | recall_at_3 | 66.714 |
Retrieval | MTEB ArguAna | recall_at_5 | 77.027 |
Clustering | MTEB ArxivClusteringP2P | v_measure | 48.567077926750066 |
Clustering | MTEB ArxivClusteringS2S | v_measure | 43.19453389182364 |
Reranking | MTEB AskUbuntuDupQuestions | map | 64.46555939623092 |
Reranking | MTEB AskUbuntuDupQuestions | mrr | 77.82361605768807 |
STS | MTEB BIOSSES | cos_sim_pearson | 84.9554128814735 |
STS | MTEB BIOSSES | cos_sim_spearman | 84.65373612172036 |
STS | MTEB BIOSSES | euclidean_pearson | 83.2905059954138 |
STS | MTEB BIOSSES | euclidean_spearman | 84.52240782811128 |
STS | MTEB BIOSSES | manhattan_pearson | 82.99533802997436 |
STS | MTEB BIOSSES | manhattan_spearman | 84.20673798475734 |
Classification | MTEB Banking77Classification | accuracy | 87.78896103896103 |
Classification | MTEB Banking77Classification | f1 | 87.77189310964883 |
Clustering | MTEB BiorxivClusteringP2P | v_measure | 39.714538337650495 |
Clustering | MTEB BiorxivClusteringS2S | v_measure | 36.90108349284447 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_1 | 32.795 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_10 | 43.669000000000004 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_100 | 45.151 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_1000 | 45.278 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_3 | 40.006 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_5 | 42.059999999999995 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_1 | 39.771 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_10 | 49.826 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_100 | 50.504000000000005 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_1000 | 50.549 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_3 | 47.115 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_5 | 48.832 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_1 | 39.771 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_10 | 50.217999999999996 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_100 | 55.454 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_1000 | 57.37 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_3 | 44.885000000000005 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_5 | 47.419 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_1 | 39.771 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_10 | 9.642000000000001 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_100 | 1.538 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_1000 | 0.198 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_3 | 21.268 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_5 | 15.536 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_1 | 32.795 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_10 | 62.580999999999996 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_100 | 84.438 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_1000 | 96.492 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_3 | 47.071000000000005 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_5 | 54.079 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_1 | 32.671 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_10 | 43.334 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_100 | 44.566 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_1000 | 44.702999999999996 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_3 | 40.343 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_5 | 41.983 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_1 | 40.764 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_10 | 49.382 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_100 | 49.988 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_1000 | 50.03300000000001 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_3 | 47.293 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_5 | 48.51 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_1 | 40.764 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_10 | 49.039 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_100 | 53.259 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_1000 | 55.253 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_3 | 45.091 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_5 | 46.839999999999996 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_1 | 40.764 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_10 | 9.191 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_100 | 1.476 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_1000 | 0.19499999999999998 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_3 | 21.72 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_5 | 15.299 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_1 | 32.671 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_10 | 58.816 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_100 | 76.654 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_1000 | 89.05999999999999 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_3 | 46.743 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_5 | 51.783 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_1 | 40.328 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_10 | 53.32599999999999 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_100 | 54.37499999999999 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_1000 | 54.429 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_3 | 49.902 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_5 | 52.002 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_1 | 46.332 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_10 | 56.858 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_100 | 57.522 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_1000 | 57.54899999999999 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_3 | 54.472 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_5 | 55.996 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_1 | 46.332 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_10 | 59.313 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_100 | 63.266999999999996 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_1000 | 64.36 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_3 | 53.815000000000005 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_5 | 56.814 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_1 | 46.332 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_10 | 9.53 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_100 | 1.238 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_1000 | 0.13699999999999998 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_3 | 24.054000000000002 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_5 | 16.589000000000002 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_1 | 40.328 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_10 | 73.421 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_100 | 90.059 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_1000 | 97.81 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_3 | 59.009 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_5 | 66.352 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_1 | 27.424 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_10 | 36.332 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_100 | 37.347 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_1000 | 37.422 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_3 | 33.743 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_5 | 35.176 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_1 | 29.153000000000002 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_10 | 38.233 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_100 | 39.109 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_1000 | 39.164 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_3 | 35.876000000000005 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_5 | 37.169000000000004 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_1 | 29.153000000000002 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_10 | 41.439 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_100 | 46.42 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_1000 | 48.242000000000004 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_3 | 36.362 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_5 | 38.743 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_1 | 29.153000000000002 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_10 | 6.315999999999999 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_100 | 0.927 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_1000 | 0.11199999999999999 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_3 | 15.443000000000001 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_5 | 10.644 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_1 | 27.424 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_10 | 55.364000000000004 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_100 | 78.211 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_1000 | 91.74600000000001 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_3 | 41.379 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_5 | 47.14 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_1 | 19.601 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_10 | 27.826 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_100 | 29.017 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_1000 | 29.137 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_3 | 25.125999999999998 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_5 | 26.765 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_1 | 24.005000000000003 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_10 | 32.716 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_100 | 33.631 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_1000 | 33.694 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_3 | 29.934 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_5 | 31.630999999999997 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_1 | 24.005000000000003 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_10 | 33.158 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_100 | 38.739000000000004 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_1000 | 41.495 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_3 | 28.185 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_5 | 30.796 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_1 | 24.005000000000003 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_10 | 5.908 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_100 | 1.005 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_1000 | 0.13899999999999998 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_3 | 13.391 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_5 | 9.876 |
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models