Model Overview
Model Features
Model Capabilities
Use Cases
🚀 BRIA 2.3 ControlNet Inpainting Fast
BRIA 2.3 ControlNet Inpainting Fast is trained on a large - scale commercial - grade dataset, ensuring high - quality results and full legal liability for commercial use. It can fill masked regions in images based on text prompts.
🚀 Quick Start
BRIA 2.3 ControlNet Inpainting Fast is a powerful model for text - to - image inpainting. It offers high - quality results and legal protection for commercial applications.
Join our Discord community for more information, tutorials, tools, and to connect with other users!
✨ Features
New Features
BRIA 2.3 ControlNet Inpainting can be applied on top of BRIA 2.3 Text - to - Image and therefore enable to use Fast - LORA. This results in an extremely fast inpainting model, requiring only 1.6s using A10 GPU.
General Features
- High - Quality Results: Trained on the largest multi - source commercial - grade licensed dataset, it guarantees the best quality.
- Commercial Safety: The model provides full legal liability coverage for copyright and privacy infringement and harmful content mitigation.
- Versatile Application: It can be used for object removal, replacement, addition, and modification within an image, as well as image expansion.
📦 Installation
The model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we'll reach out to you.
Request a Commercial License
Fill in this form to request a commercial license for the model.
Field | Type |
---|---|
Name | text |
Company/Org name | text |
Org Type (Early/Growth Startup, Enterprise, Academy) | text |
Role | text |
Country | text |
text | |
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: | checkbox |
💻 Usage Examples
Basic Usage
Download
from huggingface_hub import hf_hub_download
import os
try:
local_dir = os.path.dirname(__file__)
except:
local_dir = '.'
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='controlnet.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='config.json', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='image_processor.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='pipeline_controlnet_sd_xl.py', local_dir=local_dir)
Run
from diffusers import (
AutoencoderKL,
LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms
import os
def resize_image_to_retain_ratio(image):
pixel_number = 1024*1024
granularity_val = 8
ratio = image.size[0] / image.size[1]
width = int((pixel_number * ratio) ** 0.5)
width = width - (width % granularity_val)
height = int(pixel_number / width)
height = height - (height % granularity_val)
image = image.resize((width, height))
return image
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
def get_masked_image(image, image_mask, width, height):
image_mask = image_mask # inpaint area is white
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
image_mask_pil = image_mask
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
masked_image_to_present = image.copy()
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
image = Image.fromarray((image * 255.0).astype(np.uint8))
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
return image, image_mask_pil, masked_image_to_present
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((1024, 1024))
mask_image = download_image(mask_url).resize((1024, 1024))
init_image = resize_image_to_retain_ratio(init_image)
width, height = init_image.size
mask_image = mask_image.convert("L").resize(init_image.size)
width, height = init_image.size
# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-Inpainting", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe = pipe.to(device="cuda")
# pipe.enable_xformers_memory_efficient_attention()
generator = torch.Generator(device="cuda").manual_seed(123456)
vae = pipe.vae
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
mask_tensor = mask_tensor / 255.0
mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
masked_image = torch.cat([control_latents, mask_resized], dim=1)
prompt = ""
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
controlnet_conditioning_scale=1.0,
num_inference_steps=12,
height=height, width=width,
image = masked_image, # control image
init_image = init_image,
mask_image = mask_tensor,
guidance_scale = 1.2,
generator=generator).images[0]
display(gen_img)
📚 Documentation
Model Description
Property | Details |
---|---|
Developed by | BRIA AI |
Model Type | Latent diffusion image - to - image model |
License | [bria - 2.3 inpainting Licensing terms & conditions](https://bria.ai/bria - huggingface - model - license - agreement/). Purchase is required to license and access the model. |
Model Description | BRIA 2.3 inpainting was trained exclusively on a professional - grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage. |
Resources for more information | BRIA AI |
Get Access to the source code and pre - trained model
Interested in BRIA 2.3 inpainting? Our Model is available for purchase.
Purchasing access to BRIA 2.3 inpainting ensures royalty management and full liability for commercial use.
Are you a startup or a student? We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the - visual - generative - ai - platform - for - builders - startups - plan?_gl=1cqrl81_gaMTIxMDI2NzI5OC4xNjk5NTQ3MDAz_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting - edge technology.
Contact us today to unlock the potential of BRIA 2.3 inpainting!
By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy - policy/) and [Terms & conditions](https://bria.ai/terms - and - conditions/).
📄 License
The model is under the [bria - 2.3 inpainting Licensing terms & conditions](https://bria.ai/bria - huggingface - model - license - agreement/).