đ flux-lora-training
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev, used for text - to - image and image - to - image tasks.
đ Quick Start
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
photo of $kora the cat sleeping on a windowsill.
⨠Features
Property |
Details |
Model Type |
A standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev |
Tags |
flux, flux-diffusers, text-to-image, image-to-image, diffusers, simpletuner, not-for-all-audiences, lora, template:sd-lora, standard |
Pipeline Tag |
text-to-image |
đ Documentation
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
15
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
-
Training epochs: 384
-
Training steps: 5000
-
Learning rate: 0.0001
- Learning rate schedule: constant_with_warmup
- Warmup steps: 100
-
Max grad value: 1.0
-
Effective batch size: 4
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 1
-
Gradient checkpointing: True
-
Prediction type: flow-matching (extra parameters=['flow_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all+ffs'])
-
Optimizer: adamw_bf16
-
Trainable parameter precision: Pure BF16
-
Base model precision: no_change
-
Caption dropout probability: 0.0%
-
LoRA Rank: 16
-
LoRA Alpha: None
-
LoRA Dropout: 0.1
-
LoRA initialisation style: default
Datasets
kora_image_data
- Repeats: 0
- Total number of images: 50
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'Forezeztgump/flux-lora-training'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
prompt = "photo of $kora the cat sleeping on a windowsill."
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
num_inference_steps=15,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
model_output.save("output.png", format="PNG")
đ License
License: other