đ simpletuner-lora
This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large, which can be used for text - to - image and image - to - image tasks.
Information Table
Property |
Details |
Model Type |
LyCORIS adapter |
Base Model |
stabilityai/stable-diffusion-3.5-large |
Pipeline Tag |
text-to-image |
Inference |
true |
Example Widgets
- Prompt 1: 'unconditional (blank prompt)'
- Negative Prompt: 'blurry, cropped, ugly'
- Output Image: Link
- Prompt 2: 'A photo-realistic image of a cat'
- Negative Prompt: 'blurry, cropped, ugly'
- Output Image: Link
đ Quick Start
The main validation prompt used during training was:
A photo-realistic image of a cat
⨠Features
- The text encoder was not trained. You may reuse the base model text encoder for inference.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_repo_id = 'ShanZard/simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
Training settings
- Training epochs: 1
- Training steps: 10000
- Learning rate: 0.0001
- Learning rate schedule: polynomial
- Warmup steps: 100
- Max grad value: 2.0
- Effective batch size: 2
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 2
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision:
no_change
- Caption dropout probability: 10.0%
LyCORIS Config
{
"algo": "lokr",
"multiplier": 1.0,
"full_matrix": true,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
pseudo-camera-10k-sd3
- Repeats: 0
- Total number of images: ~14102
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
đ License
License: other