đ Auraflow-DomoKun-LoRA-rank8
This project is a standard PEFT LoRA derived from fal/AuraFlow. It focuses on text - to - image and image - to - image tasks, offering a unique solution for generating relevant images.
đ Quick Start
Inference Example
import torch
from diffusers import DiffusionPipeline
model_id = 'fal/AuraFlow'
adapter_id = 'bghira/Auraflow-DomoKun-LoRA-rank8'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
prompt = "An domokun running through a field with flowers all around him."
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=512,
height=512,
guidance_scale=4.0,
).images[0]
model_output.save("output.png", format="PNG")
⨠Features
- Derived from fal/AuraFlow, it inherits the base model's capabilities.
- Supports text - to - image and image - to - image tasks.
- The text encoder was not trained, allowing reuse of the base model text encoder for inference.
đ Documentation
Validation settings
- CFG:
4.0
- CFG Rescale:
0.0
- Steps:
30
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
512x512
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
Training settings
-
Training epochs: 0
-
Training steps: 100
-
Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 100
-
Max grad value: 0.01
-
Effective batch size: 3
- Micro - batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
-
Gradient checkpointing: True
-
Prediction type: flow_matching (extra parameters=['shift=3'])
-
Optimizer: adamw_bf16
-
Trainable parameter precision: Pure BF16
-
Base model precision: no_change
-
Caption dropout probability: 10.0%
-
LoRA Rank: 8
-
LoRA Alpha: 8.0
-
LoRA Dropout: 0.1
-
LoRA initialisation style: default
Datasets
domokun - cropped - 512 - NonReg
- Repeats: 10
- Total number of images: ~36
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
domokun - cropped - 512
- Repeats: 10
- Total number of images: ~36
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: Yes
đ License
This project is licensed under the Apache 2.0 license.