Gte Vi Base V1
This is a sentence-transformers model fine-tuned from Alibaba-NLP/gte-multilingual-base, supporting Vietnamese for tasks like semantic text similarity.
Downloads 272
Release Time : 4/4/2025
Model Overview
The model maps sentences and paragraphs into a 768-dimensional dense vector space, suitable for tasks such as semantic text similarity, semantic search, paraphrase mining, text classification, and clustering.
Model Features
Multilingual support
Based on the Alibaba-NLP/gte-multilingual-base model, specifically optimized for Vietnamese.
Long text processing
Supports sequences up to 8192 tokens, making it suitable for handling long texts.
Efficient semantic representation
Maps text into a 768-dimensional dense vector space, capturing deep semantic information.
Model Capabilities
Semantic text similarity calculation
Semantic search
Paraphrase mining
Text classification
Text clustering
Use Cases
Text matching
Similar question retrieval
Finding semantically similar questions in a Q&A system
Cosine accuracy reached 0.9982
Content recommendation
Related article recommendation
Recommending articles based on content similarity
🚀 SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a Sentence Transformer model fine-tuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
🚀 Quick Start
This model is a fine - tuned version of Alibaba-NLP/gte-multilingual-base using the Sentence Transformers library. It can be used for various NLP tasks such as semantic similarity calculation, clustering, etc.
✨ Features
- Semantic Understanding: Maps sentences and paragraphs to a 768 - dimensional dense vector space, enabling effective semantic similarity calculations.
- Multilingual Support: Based on a multilingual base model, it can handle multiple languages.
- High Accuracy: Achieved a high cosine accuracy of 0.9982 on the
xnli - vi - test
dataset.
📦 Installation
First, install the Sentence Transformers library:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Dù thế nào đi nữa , tôi sẽ biết ấn độ cuối cùng đã tăng lên từ trạng thái thế giới thứ ba khi tôi quay về thăm người thân của mình và những lời đầu tiên họ nói là không ăn , ăn , gầy trai .',
'Khi người thân của tôi nói ít về thức ăn , tôi sẽ biết ấn độ đang được cải thiện .',
'Ernie Lewis đã trải qua 15 năm trong chính sách tư nhân trước khi tham gia hội đồng appalred .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 Documentation
Model Details
Model Information
Property | Details |
---|---|
Model Type | Sentence Transformer |
Base model | Alibaba-NLP/gte-multilingual-base |
Maximum Sequence Length | 8192 tokens |
Output Dimensionality | 768 dimensions |
Similarity Function | Cosine Similarity |
Training Dataset | The Vietnamese subsection of the facebook/xnli dataset with 130k triplets |
Language | Vietnamese |
License | MIT |
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Evaluation
Metrics - Triplet
- Dataset:
xnli - vi - test
- Evaluated with:
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9982 |
Training Details
Training Dataset
- Unnamed Dataset
- Size: 130,899 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| type | string | string | string |
| details |
- min: 3 tokens
- mean: 35.19 tokens
- max: 167 tokens
- min: 6 tokens
- mean: 18.96 tokens
- max: 64 tokens
- min: 6 tokens
- mean: 19.34 tokens
- max: 57 tokens
- Samples:
| sentence_0 | sentence_1 | sentence_2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|
Trong thời gian đó , julius đã lấy được đo lường của anh ta .
|Julius đã làm việc của mình rồi .
|Tôi biết anh đã nói với tôi rằng anh không bao giờ đi nhà hàng , bởi vì anh sợ họ sẽ nhổ vào thức ăn của anh .
| |Khi hoàn thiện , các công cụ sẽ cho phép các ứng dụng để đánh giá các dự án công nghệ của họ trong thời gian triển khai để cả hai đảm bảo hoàn thành thành công và cuối cùng , để xác định xem mục tiêu của họ
|Một khi hoàn thiện các công cụ sẽ được đánh giá nếu mục tiêu được đạt được .
|Có thường xuyên chiến đấu quanh khu vực của penrith .
| |H ' s , thân yêu tôi .
|À , con yêu bé nhỏ của ta .
|Đúng rồi đó .
| - Loss:
MultipleNegativesRankingLoss
with these parameters:
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
Training Hyperparameters
- Non - Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | xnli - vi - test_cosine_accuracy |
---|---|---|---|
0.1222 | 500 | 0.3095 | - |
0.2444 | 1000 | 0.1216 | 0.9976 |
0.3667 | 1500 | 0.1093 | - |
0.4889 | 2000 | 0.103 | 0.9988 |
0.6111 | 2500 | 0.0934 | - |
0.7333 | 3000 | 0.0929 | 0.9982 |
0.8555 | 3500 | 0.0847 | - |
0.9778 | 4000 | 0.0966 | 0.9982 |
1.0 | 4091 | - | 0.9982 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 0.26.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
📄 License
This model is licensed under the MIT license.
📚 Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models