đ sd35m-photo-1mp-Prodigy
This is a LyCORIS adapter for text - to - image generation, derived from stabilityai/stable-diffusion-3.5-medium, offering high - quality photo - realistic image outputs.
đ Quick Start
This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-medium.
The main validation prompt used during training was:
A photo-realistic image of a cat
⨠Features
- Text - to - Image: Capable of generating photo - realistic images from text prompts.
- LyCORIS Adapter: Based on the LyCORIS technology, enhancing the base model's performance.
đ Documentation
Validation settings
- CFG:
3.2
- CFG Rescale:
0.0
- Steps:
16
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip - layer guidance:
skip_guidance_layers=[7, 8, 9],
â ī¸ Important Note
The validation settings are not necessarily the same as the training settings.
The text encoder was not trained.
You may reuse the base model text encoder for inference.
Training settings
Property |
Details |
Training epochs |
114 |
Training steps |
230 |
Learning rate |
5e - 05 Learning rate schedule: constant Warmup steps: 500 |
Max grad value |
2.0 |
Effective batch size |
3 Micro - batch size: 3 Gradient accumulation steps: 1 Number of GPUs: 1 |
Gradient checkpointing |
True |
Prediction type |
flow_matching (extra parameters=['shift=3.0']) |
Optimizer |
optimi - lion |
Trainable parameter precision |
Pure BF16 |
Base model precision |
int8 - quanto |
Caption dropout probability |
0.0% |
LyCORIS Config:
{
"bypass_mode": true,
"algo": "lokr",
"multiplier": 1.0,
"full_matrix": true,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 4,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"FeedForward": {
"factor": 4
},
"Attention": {
"factor": 2
}
}
}
}
Datasets
cheechandchong
Property |
Details |
Repeats |
0 |
Total number of images |
4 |
Total number of aspect buckets |
1 |
Resolution |
1024 px |
Cropped |
True |
Crop style |
random |
Crop aspect |
square |
Used for regularisation data |
No |
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_repo_id = 'bghira/sd35m-photo-1mp-Prodigy'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=16,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.2,
skip_guidance_layers=[7, 8, 9],
).images[0]
model_output.save("output.png", format="PNG")
Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well - rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
đ License
License: other