đ rangerover-phase1-2e-4-constant-wcrops
This project is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev. It focuses on text - to - image generation, offering various examples of generating Range Rover images.
đ Quick Start
The text encoder of this model was not trained. You may reuse the base model text encoder for inference.
⨠Features
- Tags: This model is associated with tags such as
flux
, flux - diffusers
, text - to - image
, image - to - image
, diffusers
, simpletuner
, lora
, etc., indicating its capabilities and application scenarios.
- Pipeline Tag: It is primarily used for
text - to - image
tasks.
- Inference: Inference is supported, and you can use the provided widget examples to generate images.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'mipat12/rangerover-phase1-2e-4-constant-wcrops'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
prompt = "An astronaut is riding a horse through the jungles of Thailand."
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1344,
height=768,
guidance_scale=3.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
Property |
Details |
CFG |
3.0 |
CFG Rescale |
0.0 |
Steps |
20 |
Sampler |
FlowMatchEulerDiscreteScheduler |
Seed |
42 |
Resolution |
1344x768 |
Skip - layer guidance |
None |
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
Training settings
Property |
Details |
Training epochs |
2 |
Training steps |
10000 |
Learning rate |
8e - 05 |
Learning rate schedule |
polynomial |
Warmup steps |
100 |
Max grad value |
0.1 |
Effective batch size |
3 |
Micro - batch size |
3 |
Gradient accumulation steps |
1 |
Number of GPUs |
1 |
Gradient checkpointing |
True |
Prediction type |
flow - matching (extra parameters=['shift=3.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all']) |
Optimizer |
adamw_bf16 |
Trainable parameter precision |
Pure BF16 |
Base model precision |
int8 - quanto |
Caption dropout probability |
5.0% |
LoRA Rank |
64 |
LoRA Alpha |
None |
LoRA Dropout |
0.1 |
LoRA initialisation style |
default |
Datasets
klimt - background - 512
- Repeats: 22
- Total number of images: 79
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
klimt - background - 768
- Repeats: 22
- Total number of images: 79
- Total number of aspect buckets: 3
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
klimt - background - 1024
- Repeats: 11
- Total number of images: 79
- Total number of aspect buckets: 17
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
klimt - background - 1536
- Repeats: 5
- Total number of images: 69
- Total number of aspect buckets: 19
- Resolution: 2.359296 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
klimt - background - 512 - crop
- Repeats: 11
- Total number of images: 77
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
klimt - background - 768 - crop
- Repeats: 11
- Total number of images: 74
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
klimt - background - 512 - tight - crop
- Repeats: 11
- Total number of images: 77
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
klimt - background - 768 - tight - crop
- Repeats: 11
- Total number of images: 74
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
klimt - background - 1024 - crop
- Repeats: 5
- Total number of images: 70
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
đ License
The license type is other
.