đ simpletuner-lora-screenprinting
This is a standard PEFT LoRA that solves the problem of generating screen - printing - suitable images based on the stable - diffusion model, providing a practical solution for text - to - image tasks.
đ Quick Start
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-large.
The main validation prompt used during training was:
an image apt for screenprinting process.
⨠Features
- Text - to - Image Generation: Capable of generating images suitable for the screenprinting process from text prompts.
- Customizable Settings: Allows users to adjust various parameters during validation and inference, such as CFG, steps, sampler, etc.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_id = 'DovahChikiin72/simpletuner-lora-screenprinting'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
prompt = "an image apt for screenprinting process."
negative_prompt = 'blurry, cropped, ugly'
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=512,
height=512,
guidance_scale=5.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
Property |
Details |
CFG |
5.0 |
CFG Rescale |
0.0 |
Steps |
20 |
Sampler |
FlowMatchEulerDiscreteScheduler |
Seed |
42 |
Resolution |
512x512 |
Skip - layer guidance |
None |
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained.
You may reuse the base model text encoder for inference.
Training settings
Property |
Details |
Training epochs |
0 |
Training steps |
10000 |
Learning rate |
8e - 05 Learning rate schedule: polynomial Warmup steps: 100 |
Max grad value |
2.0 |
Effective batch size |
1 Micro - batch size: 1 Gradient accumulation steps: 1 Number of GPUs: 1 |
Gradient checkpointing |
True |
Prediction type |
flow - matching (extra parameters=['shift=3']) |
Optimizer |
adamw_bf16 |
Trainable parameter precision |
Pure BF16 |
Base model precision |
int8 - quanto |
Caption dropout probability |
5.0% |
LoRA Rank |
64 |
LoRA Alpha |
None |
LoRA Dropout |
0.1 |
LoRA initialisation style |
default |
Datasets
my - dataset - 512
Property |
Details |
Repeats |
10 |
Total number of images |
735 |
Total number of aspect buckets |
1 |
Resolution |
0.262144 megapixels |
Cropped |
False |
Crop style |
None |
Crop aspect |
None |
Used for regularisation data |
No |
my - dataset - crop - 512
Property |
Details |
Repeats |
10 |
Total number of images |
732 |
Total number of aspect buckets |
1 |
Resolution |
0.262144 megapixels |
Cropped |
True |
Crop style |
center |
Crop aspect |
square |
Used for regularisation data |
No |
đ License
The license information is "other".