đ InstructCLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning (CVPR 2025)
This project presents InstructCLIP, a model that enhances instruction - guided image editing through automated data refinement using contrastive learning, offering advanced capabilities in image processing.
đ Quick Start
This model has been pushed to the Hub using the PytorchModelHubMixin integration.
The model is based on the paper Instruct - CLIP: Improving Instruction - Guided Image Editing with Automated Data Refinement Using Contrastive Learning.
Arxiv | [Image Editing Model](https://huggingface.co/SherryXTChen/InstructCLIP - InstructPix2Pix) | [Data Refinement Model](https://huggingface.co/SherryXTChen/Instruct - CLIP) | [Data](https://huggingface.co/datasets/SherryXTChen/InstructCLIP - InstructPix2Pix - Data)
⨠Features
đĻ Installation
pip install -r requirements.txt
đģ Usage Examples
Basic Usage
from PIL import Image
import torch
from torchvision import transforms
from model import InstructCLIP
from utils import get_sd_components, normalize
parser = argparse.ArgumentParser(description="Simple example of estimating edit instruction from image pair")
parser.add_argument(
"--pretrained_instructclip_name_or_path",
type=str,
default="SherryXTChen/Instruct - CLIP",
help=(
"instructclip pretrained checkpoints"
),
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="runwayml/stable - diffusion - v1 - 5",
help=(
"sd pretrained checkpoints"
),
)
parser.add_argument(
"--input_path",
type=str,
default="assets/1_input.jpg",
help=(
"Input image path"
)
)
parser.add_argument(
"--output_path",
type=str,
default="assets/1_output.jpg",
help=(
"Output image path"
)
)
args = parser.parse_args()
device = "cuda"
model = InstructCLIP.from_pretrained("SherryXTChen/Instruct - CLIP")
model = model.to(device).eval()
tokenizer, _, vae, _, _ = get_sd_components(args, device, torch.float32)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5]),
])
image_list = [args.input_path, args.output_path]
image_list = [
transform(Image.open(f).resize((512, 512))).unsqueeze(0).to(device)
for f in image_list
]
with torch.no_grad():
image_list = [vae.encode(x).latent_dist.sample() * vae.config.scaling_factor for x in image_list]
zero_timesteps = torch.zeros_like(torch.tensor([0])).to(device)
img_feat = model.get_image_features(
inp=image_list[0], out=image_list[1], inp_t=zero_timesteps, out_t=zero_timesteps)
img_feat = normalize(img_feat)
pred_instruct_input_ids = model.text_decoder.infer(img_feat[:1])[0]
pred_instruct = tokenizer.decode(pred_instruct_input_ids, skip_special_tokens=True)
print(pred_instruct)
đ License
@misc{chen2025instructclipimprovinginstructionguidedimage,
title={Instruct - CLIP: Improving Instruction - Guided Image Editing with Automated Data Refinement Using Contrastive Learning},
author={Sherry X. Chen and Misha Sra and Pradeep Sen},
year={2025},
eprint={2503.18406},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.18406},
}
đ Information Table
Property |
Details |
Base Model |
SherryXTChen/LatentDiffusionDINOv2 |
Datasets |
timbrooks/instructpix2pix - clip - filtered, SherryXTChen/InstructCLIP - InstructPix2Pix - Data |
Language |
en |
License |
apache - 2.0 |
Pipeline Tag |
image - to - image |
Library Name |
diffusers |
Tags |
model_hub_mixin, pytorch_model_hub_mixin |