🚀 InstructCLIP:利用对比学习进行自动数据精炼改进指令引导的图像编辑 (CVPR 2025)
本项目基于对比学习实现自动数据精炼,改进了指令引导的图像编辑技术,有效提升了图像编辑的准确性和效率。
模型信息
属性 |
详情 |
基础模型 |
SherryXTChen/LatentDiffusionDINOv2 |
训练数据集 |
timbrooks/instructpix2pix - clip - filtered、SherryXTChen/InstructCLIP - InstructPix2Pix - Data |
模型类型 |
image - to - image |
库名称 |
diffusers |
标签 |
model_hub_mixin、pytorch_model_hub_mixin |
许可证 |
apache - 2.0 |
相关链接
Arxiv | 图像编辑模型 | 数据精炼模型 | 数据
🚀 快速开始
本模型已使用 PytorchModelHubMixin 集成推送到模型中心。该模型基于论文 Instruct - CLIP: Improving Instruction - Guided Image Editing with Automated Data Refinement Using Contrastive Learning。
✨ 主要特性
📦 安装指南
pip install -r requirements.txt
💻 使用示例
基础用法
from PIL import Image
import torch
from torchvision import transforms
from model import InstructCLIP
from utils import get_sd_components, normalize
parser = argparse.ArgumentParser(description="Simple example of estimating edit instruction from image pair")
parser.add_argument(
"--pretrained_instructclip_name_or_path",
type=str,
default="SherryXTChen/Instruct-CLIP",
help=(
"instructclip pretrained checkpoints"
),
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="runwayml/stable-diffusion-v1-5",
help=(
"sd pretrained checkpoints"
),
)
parser.add_argument(
"--input_path",
type=str,
default="assets/1_input.jpg",
help=(
"Input image path"
)
)
parser.add_argument(
"--output_path",
type=str,
default="assets/1_output.jpg",
help=(
"Output image path"
)
)
args = parser.parse_args()
device = "cuda"
model = InstructCLIP.from_pretrained("SherryXTChen/Instruct-CLIP")
model = model.to(device).eval()
tokenizer, _, vae, _, _ = get_sd_components(args, device, torch.float32)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5]),
])
image_list = [args.input_path, args.output_path]
image_list = [
transform(Image.open(f).resize((512, 512))).unsqueeze(0).to(device)
for f in image_list
]
with torch.no_grad():
image_list = [vae.encode(x).latent_dist.sample() * vae.config.scaling_factor for x in image_list]
zero_timesteps = torch.zeros_like(torch.tensor([0])).to(device)
img_feat = model.get_image_features(
inp=image_list[0], out=image_list[1], inp_t=zero_timesteps, out_t=zero_timesteps)
img_feat = normalize(img_feat)
pred_instruct_input_ids = model.text_decoder.infer(img_feat[:1])[0]
pred_instruct = tokenizer.decode(pred_instruct_input_ids, skip_special_tokens=True)
print(pred_instruct)
📄 许可证
本项目采用 apache - 2.0 许可证。
📚 引用
@misc{chen2025instructclipimprovinginstructionguidedimage,
title={Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning},
author={Sherry X. Chen and Misha Sra and Pradeep Sen},
year={2025},
eprint={2503.18406},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.18406},
}