đ resnet-50-FV2-finetuned-memes
This model is a fine - tuned version of microsoft/resnet-50 on the imagefolder dataset, aiming to provide high - performance image classification.
đ Quick Start
This model is a fine - tuned version of microsoft/resnet-50 on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9263
- Accuracy: 0.6453
- Precision: 0.5728
- Recall: 0.6453
- F1: 0.5964
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00012
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
1.5763 |
0.99 |
20 |
1.5575 |
0.4281 |
0.2966 |
0.4281 |
0.2669 |
1.4761 |
1.99 |
40 |
1.4424 |
0.4343 |
0.1886 |
0.4343 |
0.2630 |
1.3563 |
2.99 |
60 |
1.3240 |
0.4343 |
0.1886 |
0.4343 |
0.2630 |
1.2824 |
3.99 |
80 |
1.2636 |
0.4389 |
0.3097 |
0.4389 |
0.2734 |
1.2315 |
4.99 |
100 |
1.2119 |
0.4529 |
0.3236 |
0.4529 |
0.3042 |
1.1956 |
5.99 |
120 |
1.1764 |
0.4900 |
0.3731 |
0.4900 |
0.3692 |
1.1452 |
6.99 |
140 |
1.1424 |
0.5147 |
0.3963 |
0.5147 |
0.4090 |
1.1076 |
7.99 |
160 |
1.1190 |
0.5371 |
0.4121 |
0.5371 |
0.4392 |
1.0679 |
8.99 |
180 |
1.0825 |
0.5719 |
0.4465 |
0.5719 |
0.4831 |
1.0432 |
9.99 |
200 |
1.0482 |
0.5750 |
0.5404 |
0.5750 |
0.4930 |
0.9903 |
10.99 |
220 |
1.0275 |
0.5958 |
0.5459 |
0.5958 |
0.5241 |
0.9675 |
11.99 |
240 |
1.0145 |
0.6051 |
0.5350 |
0.6051 |
0.5379 |
0.9335 |
12.99 |
260 |
0.9860 |
0.6175 |
0.5537 |
0.6175 |
0.5527 |
0.9157 |
13.99 |
280 |
0.9683 |
0.6105 |
0.5386 |
0.6105 |
0.5504 |
0.8901 |
14.99 |
300 |
0.9558 |
0.6352 |
0.5686 |
0.6352 |
0.5833 |
0.8722 |
15.99 |
320 |
0.9382 |
0.6345 |
0.5657 |
0.6345 |
0.5807 |
0.854 |
16.99 |
340 |
0.9322 |
0.6376 |
0.5623 |
0.6376 |
0.5856 |
0.8494 |
17.99 |
360 |
0.9287 |
0.6422 |
0.6675 |
0.6422 |
0.5918 |
0.8652 |
18.99 |
380 |
0.9212 |
0.6399 |
0.5640 |
0.6399 |
0.5863 |
0.846 |
19.99 |
400 |
0.9263 |
0.6453 |
0.5728 |
0.6453 |
0.5964 |
Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1.dev0
- Tokenizers 0.13.1
đ License
This model is licensed under the Apache - 2.0 license.
đ Model Index
Property |
Details |
Model Type |
resnet-50-FV2-finetuned-memes |
Training Data |
imagefolder |
Metrics |
accuracy, precision, recall, f1 |
Results |
Task: Image Classification Dataset: imagefolder (train split) Metrics: - Accuracy: 0.6452859350850078 - Precision: 0.5727919568038408 - Recall: 0.6452859350850078 - F1: 0.5963647629954705 |