đ deit-base-patch16-224-FV-finetuned-memes
This model is a fine - tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It offers high - performance image classification capabilities, achieving excellent results on key evaluation metrics.
đ Quick Start
This model is a fine - tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6769
- Accuracy: 0.8485
- Precision: 0.8458
- Recall: 0.8485
- F1: 0.8464
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00012
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
1.2733 |
0.99 |
20 |
1.0893 |
0.5811 |
0.5790 |
0.5811 |
0.5293 |
0.7284 |
1.99 |
40 |
0.7351 |
0.7210 |
0.7642 |
0.7210 |
0.7271 |
0.4267 |
2.99 |
60 |
0.5202 |
0.7991 |
0.8104 |
0.7991 |
0.8033 |
0.2181 |
3.99 |
80 |
0.4605 |
0.8346 |
0.8351 |
0.8346 |
0.8334 |
0.1504 |
4.99 |
100 |
0.5281 |
0.8253 |
0.8281 |
0.8253 |
0.8266 |
0.1001 |
5.99 |
120 |
0.4945 |
0.8369 |
0.8336 |
0.8369 |
0.8347 |
0.0874 |
6.99 |
140 |
0.5902 |
0.8338 |
0.8370 |
0.8338 |
0.8348 |
0.0634 |
7.99 |
160 |
0.6088 |
0.8253 |
0.8221 |
0.8253 |
0.8234 |
0.0699 |
8.99 |
180 |
0.6210 |
0.8207 |
0.8202 |
0.8207 |
0.8186 |
0.0661 |
9.99 |
200 |
0.5675 |
0.8385 |
0.8417 |
0.8385 |
0.8393 |
0.0592 |
10.99 |
220 |
0.6550 |
0.8253 |
0.8324 |
0.8253 |
0.8275 |
0.0559 |
11.99 |
240 |
0.6400 |
0.8416 |
0.8370 |
0.8416 |
0.8387 |
0.0501 |
12.99 |
260 |
0.6726 |
0.8393 |
0.8353 |
0.8393 |
0.8350 |
0.0529 |
13.99 |
280 |
0.6285 |
0.8408 |
0.8399 |
0.8408 |
0.8401 |
0.0478 |
14.99 |
300 |
0.6423 |
0.8400 |
0.8380 |
0.8400 |
0.8384 |
0.0458 |
15.99 |
320 |
0.6632 |
0.8369 |
0.8337 |
0.8369 |
0.8348 |
0.048 |
16.99 |
340 |
0.6719 |
0.8423 |
0.8401 |
0.8423 |
0.8404 |
0.0417 |
17.99 |
360 |
0.6807 |
0.8423 |
0.8415 |
0.8423 |
0.8408 |
0.0461 |
18.99 |
380 |
0.6732 |
0.8454 |
0.8440 |
0.8454 |
0.8438 |
0.044 |
19.99 |
400 |
0.6769 |
0.8485 |
0.8458 |
0.8485 |
0.8464 |
Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1.dev0
- Tokenizers 0.13.1
đ License
This project is licensed under the Apache - 2.0 license.
đ Model Information
Property |
Details |
Model Type |
Fine - tuned version of facebook/deit-base-patch16-224 |
Training Data |
imagefolder dataset |
Metrics |
accuracy, precision, recall, f1 |