đ dataset_model2
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the imagefolder dataset, aiming to solve image classification tasks and provide high - accuracy classification results.
đ Quick Start
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5350
- Accuracy: 0.8798
⨠Features
- Fine - Tuned Model: Based on the pre - trained [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k), fine - tuned on the imagefolder dataset.
- Good Performance: Achieves an accuracy of 0.8798 on the evaluation set.
đ Documentation
Model Information
Property |
Details |
Model Type |
Fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) |
Training Data |
imagefolder dataset |
Metrics |
Accuracy: 0.8798, Loss: 0.5350 |
Training Procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
0.1141 |
0.99 |
62 |
0.4707 |
0.8647 |
0.1098 |
1.99 |
124 |
0.4876 |
0.8597 |
0.1444 |
2.99 |
186 |
0.4651 |
0.8647 |
0.1088 |
3.99 |
248 |
0.5397 |
0.8527 |
0.1404 |
4.99 |
310 |
0.4794 |
0.8727 |
0.0656 |
5.99 |
372 |
0.5637 |
0.8507 |
0.1126 |
6.99 |
434 |
0.5318 |
0.8597 |
0.099 |
7.99 |
496 |
0.5522 |
0.8597 |
0.0501 |
8.99 |
558 |
0.5654 |
0.8667 |
0.0878 |
9.99 |
620 |
0.5915 |
0.8517 |
0.0594 |
10.99 |
682 |
0.5846 |
0.8717 |
0.0562 |
11.99 |
744 |
0.5191 |
0.8778 |
0.0554 |
12.99 |
806 |
0.5425 |
0.8717 |
0.0368 |
13.99 |
868 |
0.5725 |
0.8778 |
0.0415 |
14.99 |
930 |
0.5790 |
0.8637 |
0.0208 |
15.99 |
992 |
0.5319 |
0.8788 |
0.026 |
16.99 |
1054 |
0.5622 |
0.8677 |
0.0307 |
17.99 |
1116 |
0.5129 |
0.8878 |
0.015 |
18.99 |
1178 |
0.5508 |
0.8768 |
0.0263 |
19.99 |
1240 |
0.5350 |
0.8798 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
đ License
This project is licensed under the Apache - 2.0 license.