đ segformer-b2-human-parse-24
This model is a fine - tuned version of mattmdjaga/segformer_b2_clothes on the human_parsing_29_mix dataset, achieving high - performance results in image segmentation.
đ Quick Start
This model is a fine - tuned version of mattmdjaga/segformer_b2_clothes on the human_parsing_29_mix dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
- Mean Iou: 0.6023
- Mean Accuracy: 0.6321
- Overall Accuracy: 0.9780
- Accuracy Background: 0.9969
- Accuracy Hat: nan
- Accuracy Hair: 0.9646
- Accuracy Glove: 0.0
- Accuracy Glasses: 0.0
- Accuracy Upper Only Torso Region: 0.9747
- Accuracy Dresses Only Torso Region: 0.4939
- Accuracy Coat Only Torso Region: 0.0039
- Accuracy Socks: 0.0
- Accuracy Left Pants: 0.9604
- Accuracy Right Patns: 0.9646
- Accuracy Skin Around Neck Region: 0.9585
- Accuracy Scarf: nan
- Accuracy Skirts: 0.8904
- Accuracy Face: 0.9796
- Accuracy Left Arm: 0.9703
- Accuracy Right Arm: 0.9700
- Accuracy Left Leg: 0.9267
- Accuracy Right Leg: 0.9297
- Accuracy Left Shoe: 0.0
- Accuracy Right Shoe: 0.0
- Accuracy Left Sleeve For Upper: 0.9462
- Accuracy Right Sleeve For Upper: 0.9517
- Accuracy Bag: 0.0234
- Iou Background: 0.9941
- Iou Hat: nan
- Iou Hair: 0.9268
- Iou Glove: 0.0
- Iou Glasses: 0.0
- Iou Upper Only Torso Region: 0.9351
- Iou Dresses Only Torso Region: 0.4059
- Iou Coat Only Torso Region: 0.0035
- Iou Socks: 0.0
- Iou Left Pants: 0.9232
- Iou Right Patns: 0.9217
- Iou Skin Around Neck Region: 0.9227
- Iou Scarf: nan
- Iou Skirts: 0.7887
- Iou Face: 0.9582
- Iou Left Arm: 0.9436
- Iou Right Arm: 0.9426
- Iou Left Leg: 0.8836
- Iou Right Leg: 0.8767
- Iou Left Shoe: 0.0
- Iou Right Shoe: 0.0
- Iou Left Sleeve For Upper: 0.9005
- Iou Right Sleeve For Upper: 0.9012
- Iou Bag: 0.0232
đ Documentation
Model description
"id2label": {
"0": "background",
"1": "hat",
"2": "hair",
"3": "glove",
"4": "glasses",
"5": "upper_only_torso_region",
"6": "dresses_only_torso_region",
"7": "coat_only_torso_region",
"8": "socks",
"9": "left_pants",
"10": "right_patns",
"11": "skin_around_neck_region",
"12": "scarf",
"13": "skirts",
"14": "face",
"15": "left_arm",
"16": "right_arm",
"17": "left_leg",
"18": "right_leg",
"19": "left_shoe",
"20": "right_shoe",
"21": "left_sleeve_for_upper",
"22": "right_sleeve_for_upper",
"23": "bag"
}
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 16
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Hat |
Accuracy Hair |
Accuracy Glove |
Accuracy Glasses |
Accuracy Upper Only Torso Region |
Accuracy Dresses Only Torso Region |
Accuracy Coat Only Torso Region |
Accuracy Socks |
Accuracy Left Pants |
Accuracy Right Patns |
Accuracy Skin Around Neck Region |
Accuracy Scarf |
Accuracy Skirts |
Accuracy Face |
Accuracy Left Arm |
Accuracy Right Arm |
Accuracy Left Leg |
Accuracy Right Leg |
Accuracy Left Shoe |
Accuracy Right Shoe |
Accuracy Left Sleeve For Upper |
Accuracy Right Sleeve For Upper |
Accuracy Bag |
Iou Background |
Iou Hat |
Iou Hair |
Iou Glove |
Iou Glasses |
Iou Upper Only Torso Region |
Iou Dresses Only Torso Region |
Iou Coat Only Torso Region |
Iou Socks |
Iou Left Pants |
Iou Right Patns |
Iou Skin Around Neck Region |
Iou Scarf |
Iou Skirts |
Iou Face |
Iou Left Arm |
Iou Right Arm |
Iou Left Leg |
Iou Right Leg |
Iou Left Shoe |
Iou Right Shoe |
Iou Left Sleeve For Upper |
Iou Right Sleeve For Upper |
Iou Bag |
0.0652 |
1.62 |
1000 |
0.0802 |
0.5857 |
0.6166 |
0.9737 |
0.9963 |
nan |
0.9490 |
0.0 |
0.0 |
0.9801 |
0.4034 |
0.0 |
0.0 |
0.9487 |
0.9574 |
0.9272 |
nan |
0.8783 |
0.9782 |
0.9628 |
0.9534 |
0.8874 |
0.9012 |
0.0 |
0.0 |
0.9227 |
0.9197 |
0.0 |
0.9926 |
nan |
0.9117 |
0.0 |
0.0 |
0.9217 |
0.3541 |
0.0 |
0.0 |
0.9084 |
0.9073 |
0.8963 |
nan |
0.7766 |
0.9455 |
0.9210 |
0.9191 |
0.8405 |
0.8496 |
0.0 |
0.0 |
0.8673 |
0.8728 |
0.0 |
0.061 |
3.23 |
2000 |
0.0843 |
0.5977 |
0.6335 |
0.9747 |
0.9967 |
nan |
0.9580 |
0.0 |
0.0 |
0.9657 |
0.5733 |
0.1504 |
0.0 |
0.9591 |
0.9600 |
0.9497 |
nan |
0.8169 |
0.9789 |
0.9667 |
0.9645 |
0.8906 |
0.9165 |
0.0 |
0.0 |
0.9444 |
0.9445 |
0.0003 |
0.9935 |
nan |
0.9199 |
0.0 |
0.0 |
0.9273 |
0.4058 |
0.1206 |
0.0 |
0.9131 |
0.9082 |
0.9128 |
nan |
0.7330 |
0.9527 |
0.9355 |
0.9343 |
0.8534 |
0.8651 |
0.0 |
0.0 |
0.8860 |
0.8879 |
0.0003 |
0.0653 |
4.85 |
3000 |
0.0823 |
0.6000 |
0.6295 |
0.9775 |
0.9967 |
nan |
0.9621 |
0.0 |
0.0 |
0.9780 |
0.4991 |
0.0044 |
0.0 |
0.9587 |
0.9649 |
0.9562 |
nan |
0.8842 |
0.9769 |
0.9692 |
0.9651 |
0.9198 |
0.9273 |
0.0 |
0.0 |
0.9422 |
0.9415 |
0.0037 |
0.9939 |
nan |
0.9247 |
0.0 |
0.0 |
0.9341 |
0.4136 |
0.0042 |
0.0 |
0.9202 |
0.9193 |
0.9193 |
nan |
0.7899 |
0.9563 |
0.9403 |
0.9388 |
0.8745 |
0.8741 |
0.0 |
0.0 |
0.8963 |
0.8970 |
0.0037 |
0.0402 |
6.46 |
4000 |
0.0818 |
0.6023 |
0.6321 |
0.9780 |
0.9969 |
nan |
0.9646 |
0.0 |
0.0 |
0.9747 |
0.4939 |
0.0039 |
0.0 |
0.9604 |
0.9646 |
0.9585 |
nan |
0.8904 |
0.9796 |
0.9703 |
0.9700 |
0.9267 |
0.9297 |
0.0 |
0.0 |
0.9462 |
0.9517 |
0.0234 |
0.9941 |
nan |
0.9268 |
0.0 |
0.0 |
0.9351 |
0.4059 |
0.0035 |
0.0 |
0.9232 |
0.9217 |
0.9227 |
nan |
0.7887 |
0.9582 |
0.9436 |
0.9426 |
0.8836 |
0.8767 |
0.0 |
0.0 |
0.9005 |
0.9012 |
0.0232 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0
đ License
This project is licensed under the MIT License.