đ Transformers Model
This project is a fine - tuned model based on the transformers
library. It uses the roberta - base
model from FacebookAI and is trained on the Webi - CPC - 11 dataset, achieving good accuracy on the evaluation set.
đ Quick Start
This model is a fine - tuned version of [FacebookAI/roberta - base](https://huggingface.co/FacebookAI/roberta - base) on an Webi - CPC - 11 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5703
- Accuracy: 0.8432
đĻ Installation
No installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
No code examples are provided in the original document, so this section is skipped.
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e - 05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
No log |
1.0 |
197 |
0.4964 |
0.6875 |
No log |
2.0 |
394 |
0.4895 |
0.8326 |
0.4856 |
3.0 |
591 |
0.3711 |
0.8422 |
0.4856 |
4.0 |
788 |
0.3289 |
0.8464 |
0.4856 |
5.0 |
985 |
0.4112 |
0.8559 |
0.2928 |
6.0 |
1182 |
0.5872 |
0.8453 |
0.2928 |
7.0 |
1379 |
0.5353 |
0.8284 |
0.1493 |
8.0 |
1576 |
0.6069 |
0.8273 |
0.1493 |
9.0 |
1773 |
0.9225 |
0.8464 |
0.1493 |
10.0 |
1970 |
1.3133 |
0.8422 |
0.0641 |
11.0 |
2167 |
1.2524 |
0.8369 |
0.0641 |
12.0 |
2364 |
1.1893 |
0.8347 |
0.0394 |
13.0 |
2561 |
1.3631 |
0.8358 |
0.0394 |
14.0 |
2758 |
1.1922 |
0.8273 |
0.0394 |
15.0 |
2955 |
1.2648 |
0.8316 |
0.0205 |
16.0 |
3152 |
1.0889 |
0.8422 |
0.0205 |
17.0 |
3349 |
1.2235 |
0.8422 |
0.0094 |
18.0 |
3546 |
1.4707 |
0.8358 |
0.0094 |
19.0 |
3743 |
1.3305 |
0.8475 |
0.0094 |
20.0 |
3940 |
1.4021 |
0.8263 |
0.0151 |
21.0 |
4137 |
1.2689 |
0.8358 |
0.0151 |
22.0 |
4334 |
1.4997 |
0.8273 |
0.0061 |
23.0 |
4531 |
1.4872 |
0.8358 |
0.0061 |
24.0 |
4728 |
1.5773 |
0.8347 |
0.0061 |
25.0 |
4925 |
1.6127 |
0.8358 |
0.0037 |
26.0 |
5122 |
1.5534 |
0.8326 |
0.0037 |
27.0 |
5319 |
1.5532 |
0.8453 |
0.0036 |
28.0 |
5516 |
1.4986 |
0.8432 |
0.0036 |
29.0 |
5713 |
1.5698 |
0.8422 |
0.0036 |
30.0 |
5910 |
1.5703 |
0.8432 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.0
đ License
This project is licensed under the MIT license.