Koe5
KoE5 is a Korean text retrieval model fine-tuned based on intfloat/multilingual-e5-large, demonstrating outstanding performance in Korean text retrieval.
Downloads 10.63k
Release Time : 9/24/2024
Model Overview
KoE5 is a Korean text retrieval model fine-tuned from the intfloat/multilingual-e5-large model using the ko-triplet-v1.0 dataset, primarily designed for Korean and English text feature extraction and retrieval tasks.
Model Features
Korean Optimization
Specifically optimized for Korean text retrieval, excelling in Korean retrieval tasks.
Multilingual Support
Supports both Korean and English text processing.
Efficient Retrieval
Provides efficient text retrieval capabilities based on the advanced E5 architecture.
Large-scale Training Data
Trained using over 700,000 Korean query-document-hard negative sample pairs.
Model Capabilities
Text Feature Extraction
Semantic Similarity Calculation
Cross-language Retrieval
Document Retrieval
Use Cases
Information Retrieval
Open-domain Q&A
Used for passage retrieval in Korean open-domain Q&A systems.
Performs well on the Ko-StrategyQA dataset.
Legal Document Retrieval
Retrieves relevant passages from a large corpus of legal documents.
Excels on the legal-domain AutoRAGRetrieval dataset.
Semantic Analysis
Semantic Similarity Calculation
Calculates the semantic similarity between two Korean texts.
Can be used for text matching, deduplication, and similar tasks.
๐ KoE5
Introducing KoE5, a model equipped with advanced retrieval capabilities. It has demonstrated remarkable performance in Korean text retrieval.
For more details, please visit the KURE repository.
โจ Features
- Advanced Retrieval: KoE5 offers advanced retrieval abilities, especially excelling in Korean text retrieval.
- Multilingual Support: Supports both Korean and English languages.
๐ฆ Installation
Install Dependencies
First, install the Sentence Transformers library:
pip install -U sentence-transformers
๐ป Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("nlpai-lab/KoE5")
# Run inference
sentences = [
'query: ํ๋ฒ๊ณผ ๋ฒ์์กฐ์ง๋ฒ์ ์ด๋ค ๋ฐฉ์์ ํตํด ๊ธฐ๋ณธ๊ถ ๋ณด์ฅ ๋ฑ์ ๋ค์ํ ๋ฒ์ ๋ชจ์์ ๊ฐ๋ฅํ๊ฒ ํ์ด',
'passage: 4. ์์ฌ์ ๊ณผ ๊ฐ์ ๋ฐฉํฅ ์์ ์ดํด๋ณธ ๋ฐ์ ๊ฐ์ด ์ฐ๋ฆฌ ํ๋ฒ๊ณผ ๏ฝข๋ฒ์์กฐ์ง ๋ฒ๏ฝฃ์ ๋๋ฒ์ ๊ตฌ์ฑ์ ๋ค์ํํ์ฌ ๊ธฐ๋ณธ๊ถ ๋ณด์ฅ๊ณผ ๋ฏผ์ฃผ์ฃผ์ ํ๋ฆฝ์ ์์ด ๋ค๊ฐ์ ์ธ ๋ฒ์ ๋ชจ์์ ๊ฐ๋ฅํ๊ฒ ํ๋ ๊ฒ์ ๊ทผ๋ณธ ๊ท๋ฒ์ผ๋ก ํ๊ณ ์๋ค. ๋์ฑ์ด ํฉ์์ฒด๋ก์์ ๋๋ฒ์ ์๋ฆฌ๋ฅผ ์ฑํํ๊ณ ์๋ ๊ฒ ์ญ์ ๊ทธ ๊ตฌ์ฑ์ ๋ค์์ฑ์ ์์ฒญํ๋ ๊ฒ์ผ๋ก ํด์๋๋ค. ์ด์ ๊ฐ์ ๊ด์ ์์ ๋ณผ ๋ ํ์ง ๋ฒ์์ฅ๊ธ ๊ณ ์๋ฒ๊ด์ ์ค์ฌ์ผ๋ก ๋๋ฒ์์ ๊ตฌ์ฑํ๋ ๊ดํ์ ๊ฐ์ ํ ํ์๊ฐ ์๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค.',
'passage: โก ์ฐ๋ฐฉํ๋ฒ์ฌํ์๋ 2001๋
1์ 24์ผ 5:3์ ๋ค์๊ฒฌํด๋ก ใ๋ฒ์์กฐ์ง๋ฒใ ์ 169์กฐ ์ 2๋ฌธ์ด ํ๋ฒ์ ํฉ์น๋๋ค๋ ํ๊ฒฐ์ ๋ด๋ ธ์ โ 5์ธ์ ๋ค์ ์ฌํ๊ด์ ์์ก๊ด๊ณ์ธ์ ์ธ๊ฒฉ๊ถ ๋ณดํธ, ๊ณต์ ํ ์ ์ฐจ์ ๋ณด์ฅ๊ณผ ๋ฐฉํด๋ฐ์ง ์๋ ๋ฒ๊ณผ ์ง์ค ๋ฐ๊ฒฌ ๋ฑ์ ๊ทผ๊ฑฐ๋ก ํ์ฌ ํ
๋ ๋น์ ์ดฌ์์ ๋ํ ์ ๋์ ์ธ ๊ธ์ง๋ฅผ ํ๋ฒ์ ํฉ์นํ๋ ๊ฒ์ผ๋ก ๋ณด์์ โ ๊ทธ๋ฌ๋ ๋๋จธ์ง 3์ธ์ ์ฌํ๊ด์ ํ์ ๋ฒ์์ ์์ก์ ์ฐจ๋ ํน๋ณํ ์ธ๊ฒฉ๊ถ ๋ณดํธ์ ์ด์ต๋ ์์ผ๋ฉฐ, ํ
๋ ๋น์ ๊ณต๊ฐ์ฃผ์๋ก ์ธํด ๋ฒ๊ณผ ์ง์ค ๋ฐ๊ฒฌ์ ๊ณผ์ ์ด ์ธ์ ๋ ์ํ๋กญ๊ฒ ๋๋ ๊ฒ์ ์๋๋ผ๋ฉด์ ๋ฐ๋์๊ฒฌ์ ์ ์ํจ โ ์๋ํ๋ฉด ํ์ ๋ฒ์์ ์์ก์ ์ฐจ์์๋ ์์ก๋น์ฌ์๊ฐ ๊ฐ์ธ์ ์ผ๋ก ์ง์ ์ฌ๋ฆฌ์ ์ฐธ์ํ๊ธฐ๋ณด๋ค๋ ๋ณํธ์ฌ๊ฐ ์ฐธ์ํ๋ ๊ฒฝ์ฐ๊ฐ ๋ง์ผ๋ฉฐ, ์ฌ๋ฆฌ๋์๋ ์ฌ์ค๋ฌธ์ ๊ฐ ์๋ ๋ฒ๋ฅ ๋ฌธ์ ๊ฐ ๋๋ถ๋ถ์ด๊ธฐ ๋๋ฌธ์ด๋ผ๋ ๊ฒ์ โก ํํธ, ์ฐ๋ฐฉํ๋ฒ์ฌํ์๋ ใ์ฐ๋ฐฉํ๋ฒ์ฌํ์๋ฒใ(Bundesverfassungsgerichtsgesetz: BVerfGG) ์ 17a์กฐ์ ๋ฐ๋ผ ์ ํ์ ์ด๋๋ง ์ฌํ์ ๋ํ ๋ฐฉ์ก์ ํ์ฉํ๊ณ ์์ โ ใ์ฐ๋ฐฉํ๋ฒ์ฌํ์๋ฒใ ์ 17์กฐ์์ ใ๋ฒ์์กฐ์ง๋ฒใ ์ 14์ ๋ด์ง ์ 16์ ์ ๊ท์ ์ ์ค์ฉํ๋๋ก ํ๊ณ ์์ง๋ง, ๋
น์์ด๋ ์ดฌ์์ ํตํ ์ฌํ๊ณต๊ฐ์ ๊ด๋ จํ์ฌ์๋ ใ๋ฒ์์กฐ์ง๋ฒใ๊ณผ ๋ค๋ฅธ ๋ด์ฉ์ ๊ท์ ํ๊ณ ์์',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6721, 0.3897],
# [0.6721, 1.0000, 0.3740],
# [0.3897, 0.3740, 1.0000]])
๐ Documentation
Model Versions
Model Name | Dimension | Sequence Length | Introduction |
---|---|---|---|
KURE-v1 | 1024 | 8192 | Fine-tuned BAAI/bge-m3 with Korean data via CachedGISTEmbedLoss |
KoE5 | 1024 | 512 | Fine-tuned intfloat/multilingual-e5-large with ko-triplet-v1.0 via CachedMultipleNegativesRankingLoss |
Model Description
This is the model card of a ๐ค transformers model that has been pushed on the Hub.
- Developed by: NLP&AI Lab
- Language(s) (NLP): Korean, English
- License: MIT
- Finetuned from model: intfloat/multilingual-e5-large
- Finetuned dataset: ko-triplet-v1.0
Training Details
Training Data
- ko-triplet-v1.0
- Korean query-document-hard_negative data pair (open data)
- Approximately 700,000+ examples were used in total.
Training Procedure
- Loss: Used CachedMultipleNegativesRankingLoss by sentence-transformers
- Batch size: 512
- Learning rate: 1e-05
- Epochs: 1
Evaluation
Metrics
- Recall, Precision, NDCG, F1
Benchmark Datasets
- Ko-StrategyQA: Korean ODQA multi-hop retrieval dataset (translation of StrategyQA)
- AutoRAGRetrieval: Korean document retrieval dataset constructed by parsing PDFs in five fields: finance, public, medical, legal, and commerce.
- MIRACLRetrieval: Korean document retrieval dataset based on Wikipedia.
- PublicHealthQA: Korean document retrieval dataset for the medical and public health domains.
- BelebeleRetrieval: Korean document retrieval dataset based on FLORES-200.
- MrTidyRetrieval: Korean document retrieval dataset based on Wikipedia.
- MultiLongDocRetrieval: Korean long-text retrieval dataset across various domains.
- XPQARetrieval: Korean document retrieval dataset across various domains.
Results
The following are the average results of all models on all benchmark datasets. For detailed results, please visit KURE Github.
Top-k 1
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.52640 | 0.60551 | 0.60551 | 0.55784 |
dragonkue/BGE-m3-ko | 0.52361 | 0.60394 | 0.60394 | 0.55535 |
BAAI/bge-m3 | 0.51778 | 0.59846 | 0.59846 | 0.54998 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.51246 | 0.59384 | 0.59384 | 0.54489 |
nlpai-lab/KoE5 | 0.50157 | 0.57790 | 0.57790 | 0.53178 |
intfloat/multilingual-e5-large | 0.50052 | 0.57727 | 0.57727 | 0.53122 |
jinaai/jina-embeddings-v3 | 0.48287 | 0.56068 | 0.56068 | 0.51361 |
BAAI/bge-multilingual-gemma2 | 0.47904 | 0.55472 | 0.55472 | 0.50916 |
intfloat/multilingual-e5-large-instruct | 0.47842 | 0.55435 | 0.55435 | 0.50826 |
intfloat/multilingual-e5-base | 0.46950 | 0.54490 | 0.54490 | 0.49947 |
intfloat/e5-mistral-7b-instruct | 0.46772 | 0.54394 | 0.54394 | 0.49781 |
Alibaba-NLP/gte-multilingual-base | 0.46469 | 0.53744 | 0.53744 | 0.49353 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.46633 | 0.53625 | 0.53625 | 0.49429 |
openai/text-embedding-3-large | 0.44884 | 0.51688 | 0.51688 | 0.47572 |
Salesforce/SFR-Embedding-2_R | 0.43748 | 0.50815 | 0.50815 | 0.46504 |
upskyy/bge-m3-korean | 0.43125 | 0.50245 | 0.50245 | 0.45945 |
jhgan/ko-sroberta-multitask | 0.33788 | 0.38497 | 0.38497 | 0.35678 |
Top-k 3
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.68678 | 0.28711 | 0.65538 | 0.39835 |
dragonkue/BGE-m3-ko | 0.67834 | 0.28385 | 0.64950 | 0.39378 |
BAAI/bge-m3 | 0.67526 | 0.28374 | 0.64556 | 0.39291 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.67128 | 0.28193 | 0.64042 | 0.39072 |
intfloat/multilingual-e5-large | 0.65807 | 0.27777 | 0.62822 | 0.38423 |
nlpai-lab/KoE5 | 0.65174 | 0.27329 | 0.62369 | 0.37882 |
BAAI/bge-multilingual-gemma2 | 0.64415 | 0.27416 | 0.61105 | 0.37782 |
jinaai/jina-embeddings-v3 | 0.64116 | 0.27165 | 0.60954 | 0.37511 |
intfloat/multilingual-e5-large-instruct | 0.64353 | 0.27040 | 0.60790 | 0.37453 |
Alibaba-NLP/gte-multilingual-base | 0.63744 | 0.26404 | 0.59695 | 0.36764 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.63163 | 0.25937 | 0.59237 | 0.36263 |
intfloat/multilingual-e5-base | 0.62099 | 0.26144 | 0.59179 | 0.36203 |
intfloat/e5-mistral-7b-instruct | 0.62087 | 0.26144 | 0.58917 | 0.36188 |
openai/text-embedding-3-large | 0.61035 | 0.25356 | 0.57329 | 0.35270 |
Salesforce/SFR-Embedding-2_R | 0.60001 | 0.25253 | 0.56346 | 0.34952 |
upskyy/bge-m3-korean | 0.59215 | 0.25076 | 0.55722 | 0.34623 |
jhgan/ko-sroberta-multitask | 0.46930 | 0.18994 | 0.43293 | 0.26696 |
Top-k 5
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.73851 | 0.19130 | 0.67479 | 0.29903 |
dragonkue/BGE-m3-ko | 0.72517 | 0.18799 | 0.66692 | 0.29401 |
BAAI/bge-m3 | 0.72954 | 0.18975 | 0.66615 | 0.29632 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.72962 | 0.18875 | 0.66236 | 0.29542 |
nlpai-lab/KoE5 | 0.70820 | 0.18287 | 0.64499 | 0.28628 |
intfloat/multilingual-e5-large | 0.70124 | 0.18316 | 0.64402 | 0.28588 |
BAAI/bge-multilingual-gemma2 | 0.70258 | 0.18556 | 0.63338 | 0.28851 |
jinaai/jina-embeddings-v3 | 0.69933 | 0.18256 | 0.63133 | 0.28505 |
intfloat/multilingual-e5-large-instruct | 0.69018 | 0.17838 | 0.62486 | 0.27933 |
Alibaba-NLP/gte-multilingual-base | 0.69365 | 0.17789 | 0.61896 | 0.27879 |
intfloat/multilingual-e5-base | 0.67250 | 0.17406 | 0.61119 | 0.27247 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.67447 | 0.17114 | 0.60952 | 0.26943 |
intfloat/e5-mistral-7b-instruct | 0.67449 | 0.17484 | 0.60935 | 0.27349 |
openai/text-embedding-3-large | 0.66365 | 0.17004 | 0.59389 | 0.26677 |
Salesforce/SFR-Embedding-2_R | 0.65622 | 0.17018 | 0.58494 | 0.26612 |
upskyy/bge-m3-korean | 0.65477 | 0.17015 | 0.58073 | 0.26589 |
jhgan/ko-sroberta-multitask | 0.53136 | 0.13264 | 0.45879 | 0.20976 |
Top-k 10
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.79682 | 0.10624 | 0.69473 | 0.18524 |
dragonkue/BGE-m3-ko | 0.78450 | 0.10492 | 0.68748 | 0.18288 |
BAAI/bge-m3 | 0.79195 | 0.10592 | 0.68723 | 0.18456 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.78669 | ... | ... | ... |
๐ License
This project is licensed under the MIT license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models
ยฉ 2025AIbase