FRIDA
F
FRIDA
Developed by ai-forever
FRIDA is a multi-task evaluation model that supports various natural language processing tasks, including classification, clustering, and re-ranking.
Downloads 9,491
Release Time : 12/26/2024
Model Overview
FRIDA is a versatile model suitable for multiple natural language processing tasks such as text classification, sentiment analysis, clustering, and re-ranking.
Model Features
Multi-task Support
Supports various natural language processing tasks, including classification, clustering, and re-ranking.
High Performance
Performs excellently on multiple datasets, especially in headline classification and inappropriate content classification tasks.
Multilingual Support
Primarily supports Russian but also performs well in multilingual tasks.
Model Capabilities
Text Classification
Sentiment Analysis
Clustering
Re-ranking
Multi-label Classification
Use Cases
Content Moderation
Inappropriate Content Detection
Used to detect and classify inappropriate content, such as hate speech or harmful information.
Accuracy 78.33%, F1-score 78.20%
Sentiment Analysis
Movie Review Sentiment Classification
Used to analyze the sentiment orientation of movie reviews.
Accuracy 70.47%, F1-score 65.84%
Information Retrieval
MIRACL Re-ranking
Used for document re-ranking tasks in information retrieval.
NDCG@10 66.04%, MAP@10 60.21%
🚀 FRIDA
FRIDA is a model that has been evaluated on multiple datasets, demonstrating its performance in various natural language processing tasks such as multilabel classification, classification, clustering, reranking, and retrieval.
📚 Documentation
Model Evaluation Results
Dataset Name | Dataset Type | Task Type | Metrics | Value |
---|---|---|---|---|
MTEB CEDRClassification (default) | ai-forever/cedr-classification | MultilabelClassification | accuracy | 64.60148777895856 |
MTEB CEDRClassification (default) | ai-forever/cedr-classification | MultilabelClassification | f1 | 70.36630348039266 |
MTEB CEDRClassification (default) | ai-forever/cedr-classification | MultilabelClassification | lrap | 92.47290116896953 |
MTEB CEDRClassification (default) | ai-forever/cedr-classification | MultilabelClassification | main_score | 64.60148777895856 |
MTEB GeoreviewClassification (default) | ai-forever/georeview-classification | Classification | accuracy | 57.70996093750001 |
MTEB GeoreviewClassification (default) | ai-forever/georeview-classification | Classification | f1 | 53.18542982057098 |
MTEB GeoreviewClassification (default) | ai-forever/georeview-classification | Classification | f1_weighted | 53.17663229582108 |
MTEB GeoreviewClassification (default) | ai-forever/georeview-classification | Classification | main_score | 57.70996093750001 |
MTEB GeoreviewClusteringP2P (default) | ai-forever/georeview-clustering-p2p | Clustering | main_score | 78.25468393043356 |
MTEB GeoreviewClusteringP2P (default) | ai-forever/georeview-clustering-p2p | Clustering | v_measure | 78.25468393043356 |
MTEB GeoreviewClusteringP2P (default) | ai-forever/georeview-clustering-p2p | Clustering | v_measure_std | 0.5094366871364238 |
MTEB HeadlineClassification (default) | ai-forever/headline-classification | Classification | accuracy | 89.0185546875 |
MTEB HeadlineClassification (default) | ai-forever/headline-classification | Classification | f1 | 88.993933120612 |
MTEB HeadlineClassification (default) | ai-forever/headline-classification | Classification | f1_weighted | 88.99276764225768 |
MTEB HeadlineClassification (default) | ai-forever/headline-classification | Classification | main_score | 89.0185546875 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | accuracy | 78.330078125 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | ap | 73.17856750532495 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | ap_weighted | 73.17856750532495 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | f1 | 78.20169867599041 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | f1_weighted | 78.20169867599041 |
MTEB InappropriatenessClassification (default) | ai-forever/inappropriateness-classification | Classification | main_score | 78.330078125 |
MTEB KinopoiskClassification (default) | ai-forever/kinopoisk-sentiment-classification | Classification | accuracy | 70.46666666666665 |
MTEB KinopoiskClassification (default) | ai-forever/kinopoisk-sentiment-classification | Classification | f1 | 65.83951766538878 |
MTEB KinopoiskClassification (default) | ai-forever/kinopoisk-sentiment-classification | Classification | f1_weighted | 65.83951766538878 |
MTEB KinopoiskClassification (default) | ai-forever/kinopoisk-sentiment-classification | Classification | main_score | 70.46666666666665 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@1(MIRACL) | 39.023 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@10(MIRACL) | 60.208 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@100(MIRACL) | 61.672000000000004 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@1000(MIRACL) | 61.672000000000004 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@20(MIRACL) | 61.30799999999999 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@3(MIRACL) | 53.33 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | MAP@5(MIRACL) | 57.289 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@1(MIRACL) | 63.352 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@10(MIRACL) | 66.042 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@100(MIRACL) | 68.702 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@1000(MIRACL) | 68.702 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@20(MIRACL) | 67.768 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@3(MIRACL) | 61.925 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | NDCG@5(MIRACL) | 63.327 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@1(MIRACL) | 63.352 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@10(MIRACL) | 16.512 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@100(MIRACL) | 1.9529999999999998 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@1000(MIRACL) | 0.19499999999999998 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@20(MIRACL) | 9.13 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@3(MIRACL) | 37.878 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | P@5(MIRACL) | 27.586 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@1(MIRACL) | 39.023 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@10(MIRACL) | 72.35000000000001 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@100(MIRACL) | 79.952 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@1000(MIRACL) | 79.952 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@20(MIRACL) | 76.828 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@3(MIRACL) | 57.769999999999996 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | Recall@5(MIRACL) | 64.91900000000001 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | main_score | 66.042 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1000_diff1(MIRACL) | 27.150388833033052 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1000_max(MIRACL) | 55.15672274267081 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1000_std(MIRACL) | 30.088939934575553 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@100_diff1(MIRACL) | 27.150388833033052 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@100_max(MIRACL) | 55.15672274267081 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@100_std(MIRACL) | 30.088939934575553 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@10_diff1(MIRACL) | 27.853691773641742 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@10_max(MIRACL) | 52.89390350055654 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@10_std(MIRACL) | 28.08732516551691 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1_diff1(MIRACL) | 43.23179150244192 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1_max(MIRACL) | 29.923943954188864 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@1_std(MIRACL) | 7.447084370195121 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@20_diff1(MIRACL) | 27.328384072311675 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@20_max(MIRACL) | 54.60286379835721 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@20_std(MIRACL) | 29.8084128980043 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@3_diff1(MIRACL) | 31.244971536944554 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@3_max(MIRACL) | 43.63984692803854 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@3_std(MIRACL) | 18.609234683765887 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@5_diff1(MIRACL) | 29.088760492638286 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@5_max(MIRACL) | 48.30474364461509 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_MAP@5_std(MIRACL) | 23.817514353844224 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1000_diff1(MIRACL) | 23.12754356408408 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1000_max(MIRACL) | 64.24894553363303 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1000_std(MIRACL) | 38.19318050598967 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@100_diff1(MIRACL) | 23.12754356408408 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@100_max(MIRACL) | 64.24894553363303 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@100_std(MIRACL) | 38.19318050598967 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@10_diff1(MIRACL) | 24.779856373697275 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@10_max(MIRACL) | 60.4054459738118 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@10_std(MIRACL) | 35.148950441182784 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1_diff1(MIRACL) | 35.605865569438556 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1_max(MIRACL) | 65.77787399715454 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@1_std(MIRACL) | 34.34726892885082 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@20_diff1(MIRACL) | 23.71231783125691 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@20_max(MIRACL) | 62.89676599488004 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@20_std(MIRACL) | 37.697052941884316 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@3_diff1(MIRACL) | 26.109027741640865 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@3_max(MIRACL) | 56.22356793638693 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@3_std(MIRACL) | 29.9437568508688 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@5_diff1(MIRACL) | 25.98644715327336 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@5_max(MIRACL) | 56.25032008404774 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_NDCG@5_std(MIRACL) | 31.581899860862578 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1000_diff1(MIRACL) | -18.29912787064644 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1000_max(MIRACL) | 31.811344878776087 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1000_std(MIRACL) | 30.163820183304914 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@100_diff1(MIRACL) | -18.299127870646405 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@100_max(MIRACL) | 31.811344878776133 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@100_std(MIRACL) | 30.163820183304956 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@10_diff1(MIRACL) | -15.96416268531149 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@10_max(MIRACL) | 36.989578896466526 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@10_std(MIRACL) | 34.54507111688143 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1_diff1(MIRACL) | 35.605865569438556 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1_max(MIRACL) | 65.77787399715454 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@1_std(MIRACL) | 34.34726892885082 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@20_diff1(MIRACL) | -17.443963421383287 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@20_max(MIRACL) | 34.309618168778385 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@20_std(MIRACL) | 33.38820956485373 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@3_diff1(MIRACL) | -8.533621861815652 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@3_max(MIRACL) | 45.90408386776497 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@3_std(MIRACL) | 34.50459351305535 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@5_diff1(MIRACL) | -13.207968899314865 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@5_max(MIRACL) | 40.37718282248973 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_P@5_std(MIRACL) | 35.601417332196206 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1000_diff1(MIRACL) | 7.907304198177226 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1000_max(MIRACL) | 77.82197832361145 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1000_std(MIRACL) | 52.66957487246724 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@100_diff1(MIRACL) | 7.907304198177226 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@100_max(MIRACL) | 77.82197832361145 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@100_std(MIRACL) | 52.66957487246724 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@10_diff1(MIRACL) | 15.498121023488693 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@10_max(MIRACL) | 62.24320529338724 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@10_std(MIRACL) | 40.60221460946224 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1_diff1(MIRACL) | 43.23179150244192 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1_max(MIRACL) | 29.923943954188864 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@1_std(MIRACL) | 7.447084370195121 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@20_diff1(MIRACL) | 11.457044176116248 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@20_max(MIRACL) | 70.3493054342368 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@20_std(MIRACL) | 49.27124296325928 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@3_diff1(MIRACL) | 25.12077828977941 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@3_max(MIRACL) | 42.903379317937166 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@3_std(MIRACL) | 20.324501722161497 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@5_diff1(MIRACL) | 20.925701235197977 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@5_max(MIRACL) | 49.85323960390812 |
MTEB MIRACLReranking (ru) | miracl/mmteb-miracl-reranking | Reranking | nAUC_Recall@5_std(MIRACL) | 29.04484539530469 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | main_score | 71.882 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_1 | 37.913000000000004 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_10 | 62.604000000000006 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_100 | 64.925 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_1000 | 64.992 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_20 | 64.081 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_3 | 55.212 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | map_at_5 | 59.445 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_1 | 73.24281150159744 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_10 | 81.65043866321825 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_100 | 81.85391378818977 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_1000 | 81.85753390802569 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_20 | 81.81045606130179 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_3 | 80.56443024494146 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | mrr_at_5 | 81.30724174653893 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1000_diff1 | 26.962150235593356 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1000_max | 29.234958037854568 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1000_std | -2.4294465103633884 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_100_diff1 | 26.92990252114163 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_100_max | 29.206328533120118 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_100_std | -2.437371090941197 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_10_diff1 | 25.758265691179226 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_10_max | 26.949978490795317 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_10_std | -5.484961002106038 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1_diff1 | 34.70849461278043 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1_max | 12.778570893623042 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_1_std | -13.018292652743938 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_20_diff1 | 26.659923008218268 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_20_max | 28.341440871568185 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_20_std | -3.614549844913084 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_3_diff1 | 27.197629021438203 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_3_max | 20.701094874050856 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_3_std | -12.062992301112041 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_5_diff1 | 25.51793537203295 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_5_max | 23.80396771243794 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_map_at_5_std | -8.920465695323575 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_1000_diff1 | 45.14819989592967 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_1000_max | 53.29202156141053 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_1000_std | 18.037336462510524 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_100_diff1 | 45.15287600228451 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_100_max | 53.29979751928615 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_100_std | 18.04996604778386 |
MTEB MIRACLRetrieval (ru) | miracl/mmteb-miracl | Retrieval | nauc_mrr_at_10_diff1 | 44.96 |
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models