Ru Core News Sm
spaCy's CPU-optimized Russian processing pipeline, including tokenization, part-of-speech tagging, dependency parsing, named entity recognition, and other features
Downloads 1,310
Release Time : 3/2/2022
Model Overview
This is a Russian natural language processing model developed based on the spaCy framework, specifically optimized for Russian text processing. The model includes a complete NLP processing pipeline capable of performing tasks such as tokenization, part-of-speech tagging, dependency parsing, and named entity recognition.
Model Features
CPU optimization
Specifically optimized for CPU processing, suitable for running in resource-limited environments
Complete NLP pipeline
Includes a complete natural language processing pipeline from tokenization to named entity recognition
High accuracy
Outstanding performance in various NLP tasks, such as NER F1 score reaching 94.98% and part-of-speech tagging accuracy of 98.77%
Model Capabilities
Russian tokenization
Part-of-speech tagging
Dependency parsing
Named entity recognition
Sentence segmentation
Lemmatization
Use Cases
Text analysis
Russian news analysis
Extract entity information such as person names, place names, and organization names from Russian news
NER F1 score reaches 94.98%
Russian grammar checking
Analyze the grammatical structure of Russian sentences, identifying parts of speech and dependency relationships
Dependency parsing UAS reaches 95.87%
Information extraction
Russian document processing
Extract structured information from Russian documents
🚀 ru_core_news_sm
A Russian language processing pipeline optimized for CPU, providing various NLP capabilities such as named - entity recognition, part - of - speech tagging, etc.
📚 Documentation
Details: https://spacy.io/models/ru#ru_core_news_sm
This is a Russian pipeline optimized for CPU. Its components include tok2vec, morphologizer, parser, senter, ner, attribute_ruler, and lemmatizer.
Property | Details |
---|---|
Name | ru_core_news_sm |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | Nerus (Alexander Kukushkin) |
License | MIT |
Author | Explosion |
Model Performance
The ru_core_news_sm
model has been evaluated on several token - classification tasks, and the following are the performance metrics:
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.9487739335 |
NER | NER Recall | 0.9508500252 |
NER | NER F Score | 0.9498108449 |
TAG | TAG (XPOS) Accuracy | 0.987696514 |
POS | POS (UPOS) Accuracy | 0.987696514 |
MORPH | Morph (UFeats) Accuracy | 0.9702812464 |
LEMMA | Lemma Accuracy | 2.15295e - 05 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9586955101 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.946180635 |
SENTS | Sentences F - Score | 0.9988584475 |
Label Scheme
View label scheme (900 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
Case=Nom|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Anim|Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Acc|POS=NUM , Animacy=Inan|Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Case=Gen|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , POS=ADP , Case=Gen|Gender=Fem|Number=Sing|POS=DET , Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing|POS=NOUN , POS=PUNCT , Degree=Pos|POS=ADV , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Animacy=Anim|Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Case=Loc|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Loc|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=PRON , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Nom|Gender=Neut|Number=Sing|POS=NOUN , Foreign=Yes|POS=PROPN , Case=Loc|Gender=Fem|Number=Sing|POS=NUM , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing|POS=NOUN , POS=NUM , Animacy=Inan|Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Ins|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Inan|Case=Dat|Gender=Neut|Number=Sing|POS=NOUN , POS=DET , Animacy=Inan|Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Fem|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Dat|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=SCONJ , Animacy=Inan|Case=Ins|Gender=Neut|Number=Sing|POS=NOUN , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=Third , Case=Acc|POS=NUM , Case=Ins|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Ins|Gender=Masc|Number=Plur|POS=NOUN , POS=CCONJ , Case=Nom|POS=NUM , Animacy=Inan|Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Masc|Number=Sing|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Case=Nom|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Ins|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Gender=Masc|Number=Sing|POS=DET , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Acc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Nom|Gender=Fem|Number=Sing|POS=PRON , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Mid , Case=Ins|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Case=Dat|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Fem|Number=Sing|POS=NOUN , Animacy=Inan|Case=Gen|Gender=Neut|Number=Sing|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Neut|Number=Plur|POS=NOUN , Degree=Pos|Number=Plur|POS=ADJ|StyleVariant=Short , Aspect=Imp|Mood=Ind|Number=Plur|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Aspect=Perf|POS=VERB|VerbForm=Inf|Voice=Act , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=PRON , Case=Loc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Masc|Number=Plur|POS=NOUN , Case=Gen|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Aspect=Perf|Number=Plur|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Anim|Case=Acc|Gender=Masc|POS=NUM , Animacy=Anim|Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Anim|Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Mood=Cnd|POS=SCONJ , Case=Nom|Number=Plur|POS=PRON|Person=Third , POS=PART|Polarity=Neg , Aspect=Imp|POS=VERB|VerbForm=Inf|Voice=Mid , Animacy=Inan|Aspect=Perf|Case=Acc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Acc|Gender=Fem|Number=Plur|POS=NOUN , POS=SPACE , Case=Nom|Number=Plur|POS=DET , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Anim|Case=Acc|Number=Plur|POS=PRON , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=NOUN , Case=Gen|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=INTJ , Animacy=Inan|Case=Loc|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Neut|Number=Sing|POS=PRON , Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Case=Nom|Number=Plur|POS=PRON , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ|StyleVariant=Short , Case=Gen|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Case=Gen|POS=PRON , Animacy=Inan|Case=Dat|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|POS=VERB|VerbForm=Inf|Voice=Act , Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=PRON|Person=Third , Animacy=Inan|Case=Acc|Number=Plur|POS=DET , Case=Nom|POS=PRON , Animacy=Anim|Case=Ins|Gender=Masc|Number=Plur|POS=NOUN , POS=ADJ , Case=Loc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Imp|Mood=Ind|Number=Sing|POS=AUX|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Gender=Fem|Number=Sing|POS=PRON|Person=Third , Case=Ins|Gender=Masc|Number=Sing|POS=DET , Animacy=Inan|Case=Ins|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Case=Acc|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=NOUN , Animacy=Inan|Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , Case=Nom|Number=Sing|POS=PRON|Person=First , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=First|Tense=Pres|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Acc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Mood=Cnd|POS=AUX , Case=Nom|Number=Plur|POS=PRON|Person=First , Case=Gen|Number=Plur|POS=DET , Animacy=Inan|Case=Ins|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|Case=Gen|Gender=Masc|Number=Sing|POS=VERB|Tense=Pres|VerbForm=Part|Voice=Act , Animacy=Inan|Case=Ins|Gender=Neut|Number=Sing|POS=PRON , Aspect=Perf|POS=VERB|VerbForm=Inf|Voice=Mid , Aspect=Perf|Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Act , Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing|POS=PROPN , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=DET , POS=PART , Case=Dat|Gender=Masc|Number=Sing|POS=DET , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Mid , Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Case=Nom|Gender=Masc|Number=Sing|POS=NUM , Animacy=Anim|Case=Dat|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Perf|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Mid , Case=Loc|Gender=Masc|Number=Sing|POS=DET , Aspect=Perf|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ|StyleVariant=Short , Animacy=Inan|Case=Gen|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Anim|Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|Person=Third , Aspect=Perf|Gender=Neut|Number=Sing|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing|POS=PROPN , Animacy=Inan|Case=Acc|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Act , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Gen|Gender=Neut|Number=Sing|POS=PRON , Aspect=Perf|Case=Loc|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=PROPN , Case=Dat|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Masc|Number=Plur|POS=PROPN , Animacy=Inan|Case=Acc|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|POS=VERB|Tense=Pres|VerbForm=Conv|Voice=Act , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Ins|Gender=Fem|Number=Sing|POS=NOUN , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Aspect=Imp|Case=Nom|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Act , Case=Gen|POS=NUM , Animacy=Inan|Case=Acc|Gender=Masc|POS=NUM , Aspect=Imp|Case=Gen|Number=Plur|POS=VERB|Tense=Pres|VerbForm=Part|Voice=Act , Animacy=Inan|Case=Ins|Gender=Fem|Number=Sing|POS=P |
📄 License
This project is licensed under the MIT
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models