đ fine-tuned-model
This is a fine-tuned model based on obi/deid_roberta_i2b2, achieving high performance on specific evaluation metrics.
đĻ Installation
The model is part of the transformers
library. You can install it using the following command:
pip install transformers
đģ Usage Examples
Basic Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "your_model_path"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
input_text = "Your input text here"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model(**inputs)
đ Documentation
Model description
This model is a fine-tuned version of obi/deid_roberta_i2b2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2126
- Model Preparation Time: 0.0061
- Precision: 0.9143
- Recall: 0.9156
- F1: 0.9132
- Accuracy: 0.9156
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Model Preparation Time |
Precision |
Recall |
F1 |
Accuracy |
0.4678 |
1.0 |
125 |
0.4248 |
0.0061 |
0.7737 |
0.8229 |
0.7836 |
0.8229 |
0.3877 |
2.0 |
250 |
0.4008 |
0.0061 |
0.7886 |
0.8282 |
0.8060 |
0.8282 |
0.3391 |
3.0 |
375 |
0.3132 |
0.0061 |
0.8213 |
0.8672 |
0.8389 |
0.8672 |
0.3091 |
4.0 |
500 |
0.3124 |
0.0061 |
0.8334 |
0.8597 |
0.8419 |
0.8597 |
0.2572 |
5.0 |
625 |
0.2570 |
0.0061 |
0.8675 |
0.8911 |
0.8739 |
0.8911 |
0.2368 |
6.0 |
750 |
0.2270 |
0.0061 |
0.8908 |
0.9084 |
0.8973 |
0.9084 |
0.2115 |
7.0 |
875 |
0.2219 |
0.0061 |
0.8960 |
0.9081 |
0.9017 |
0.9081 |
0.1949 |
8.0 |
1000 |
0.2325 |
0.0061 |
0.8993 |
0.9044 |
0.8991 |
0.9044 |
0.1843 |
9.0 |
1125 |
0.2218 |
0.0061 |
0.9035 |
0.9103 |
0.9059 |
0.9103 |
0.1691 |
10.0 |
1250 |
0.2126 |
0.0061 |
0.9143 |
0.9156 |
0.9132 |
0.9156 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.14.5
- Tokenizers 0.19.1
đ License
This project is licensed under the MIT license.