De Core News Lg
Large German language processing model provided by spaCy, supporting NLP tasks such as POS tagging, dependency parsing, and named entity recognition
Downloads 66
Release Time : 3/2/2022
Model Overview
CPU-optimized German processing pipeline, including complete NLP functionalities such as tokenization, POS tagging, morphological analysis, dependency parsing, lemmatization, sentence segmentation, and named entity recognition
Model Features
Complete NLP Pipeline
Integrated suite of natural language processing components including tokenization, POS tagging, and dependency parsing
High-accuracy POS Tagging
UPOS tagging accuracy of 98.4%, XPOS tagging accuracy of 97.9%
Optimized CPU Performance
Specifically optimized for CPU usage scenarios
Rich Morphological Analysis
Supports complex German morphological feature analysis with 92% accuracy
Model Capabilities
Tokenization
POS Tagging
Named Entity Recognition
Dependency Parsing
Lemmatization
Sentence Segmentation
Morphological Analysis
Use Cases
Text Processing
German Text Parsing
Automatically analyzes the grammatical structure and lexical features of German sentences
Obtains complete syntax trees and POS tagging information
Information Extraction
German Entity Recognition
Identifies entities such as person names, locations, and organizations from German text
Achieves an F1 score of 84.8%
๐ de_core_news_lg
The German pipeline optimized for CPU, featuring components like tok2vec, tagger, and ner for various NLP tasks.
๐ Quick Start
For more details about this model, please visit Details.
โจ Features
This German pipeline is optimized for CPU and includes multiple components such as tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, and ner.
๐ Documentation
Model Information
Property | Details |
---|---|
Model Name | de_core_news_lg |
Version | 3.7.0 |
spaCy Compatibility | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | TIGER Corpus (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther Kรถnig, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit) Tiger2Dep (Wolfgang Seeker) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | MIT |
Author | Explosion |
Model Performance
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.8527131783 |
NER | NER Recall | 0.844401557 |
NER | NER F Score | 0.8485370145 |
TAG | TAG (XPOS) Accuracy | 0.9795559667 |
POS | POS (UPOS) Accuracy | 0.9841217399 |
MORPH | Morph (UFeats) Accuracy | 0.9205894013 |
LEMMA | Lemma Accuracy | 0.9790945371 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9265658098 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.9078030166 |
SENTS | Sentences F-Score | 0.9541230945 |
Label Scheme
View label scheme (772 labels for 4 components)
Component | Labels |
---|---|
tagger |
$( , $, , $. , ADJA , ADJD , ADV , APPO , APPR , APPRART , APZR , ART , CARD , FM , ITJ , KOKOM , KON , KOUI , KOUS , NE , NN , NNE , PDAT , PDS , PIAT , PIS , PPER , PPOSAT , PPOSS , PRELAT , PRELS , PRF , PROAV , PTKA , PTKANT , PTKNEG , PTKVZ , PTKZU , PWAT , PWAV , PWS , TRUNC , VAFIN , VAIMP , VAINF , VAPP , VMFIN , VMINF , VMPP , VVFIN , VVIMP , VVINF , VVIZU , VVPP , XY , _SP |
morphologizer |
POS=PUNCT , Case=Nom|Gender=Masc|Number=Sing|POS=PROPN , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , POS=ADV , Case=Nom|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , POS=ADP , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Gender=Neut|Number=Sing|POS=PROPN , POS=VERB|VerbForm=Part , Case=Dat|Gender=Fem|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Degree=Pos|POS=ADV , Case=Dat|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Dat|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , POS=CCONJ , POS=SCONJ , Case=Acc|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , POS=VERB|VerbForm=Inf , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Nom|Gender=Fem|Number=Plur|POS=NOUN , Case=Acc|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Sup|Gender=Fem|Number=Sing|POS=ADJ , Case=Gen|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Sing|POS=NOUN , Case=Dat|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Fem|Number=Sing|POS=NOUN , POS=PART , Case=Nom|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Nom|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Dat|Number=Plur|POS=PROPN , POS=PRON|PronType=Ind , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Acc|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=PROPN , Case=Dat|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Number=Sing|POS=PROPN , Case=Dat|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Gender=Masc|Number=Plur|POS=NOUN , POS=NUM , Case=Dat|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Dat|Gender=Masc|Number=Sing|POS=ADP , Gender=Neut|POS=NOUN , Case=Acc|Number=Sing|POS=PROPN , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Case=Gen|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Acc|Gender=Fem|Number=Plur|POS=NOUN , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Gen|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=NOUN , Case=Acc|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Acc|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , POS=PROPN , Case=Nom|Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , POS=INTJ , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Case=Nom|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Neut|Number=Sing|POS=NOUN , Case=Acc|Number=Sing|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Dat|Degree=Pos|Gender=Fem|Number=Plur|POS=ADJ , Case=Acc|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Acc|Gender=Masc|Number=Plur|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Nom|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Plur|POS=PRON|PronType=Rel , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Gender=Masc|POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Nom|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=DET|PronType=Int , Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , POS=SCONJ|PronType=Int , Case=Acc|Gender=Fem|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Number=Sing|POS=PRON|PronType=Ind , Case=Gen|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Case=Dat|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Degree=Cmp|Gender=Fem|Number=Plur|POS=ADJ , Case=Nom|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Gender=Neut|POS=PRON|PronType=Ind , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Case=Dat|Gender=Fem|Number=Sing|POS=ADP , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Int , Case=Gen|Number=Plur|POS=PROPN , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Definite=Def|Gender=Neut|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Degree=Cmp|POS=ADV , Case=Nom|Gender=Neut|Number=Plur|POS=PRON|PronType=Dem , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Dat|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Acc|Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Number=Sing|POS=PROPN , Case=Nom|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Gender=Fem|Number=Plur|POS=PRON|PronType=Rel , Case=Acc|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Ind , Case=Gen|Gender=Neut|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=DET|PronType=Rel , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Acc|Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Case=Gen|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , POS=X , `Case=Dat|Degree |
๐ License
This project is licensed under the MIT
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models
ยฉ 2025AIbase