Nb Core News Sm
CPU-optimized Norwegian Bokmål processing pipeline, including token classification, dependency parsing, named entity recognition, etc.
Downloads 58
Release Time : 3/2/2022
Model Overview
This is a spaCy small Norwegian Bokmål processing model, including tokenization, part-of-speech tagging, dependency parsing, named entity recognition, etc., optimized for CPU usage.
Model Features
CPU Optimization
Specifically optimized for CPU usage, suitable for resource-limited environments
Comprehensive NLP Processing
Provides a complete natural language processing pipeline from tokenization to named entity recognition
High Accuracy
Excellent performance on Norwegian Bokmål tasks, such as a part-of-speech tagging accuracy of 96.74%
Model Capabilities
Tokenization
Part-of-speech tagging
Morphological analysis
Lemmatization
Dependency parsing
Named entity recognition
Sentence segmentation
Use Cases
Text Processing
News Analysis
Processing Norwegian Bokmål news texts to extract entities and syntactic structures
NER F-score reached 75.19%
Linguistic Research
Used for grammatical and morphological studies of Norwegian Bokmål
Morphological feature accuracy reached 95.32%
Information Extraction
Entity Recognition
Identifying entities such as person names, place names, and organization names from text
Supports recognition of 9 entity types
🚀 nb_core_news_sm
The Norwegian (Bokmål) pipeline optimized for CPU, designed for token - classification tasks.
🚀 Quick Start
The nb_core_news_sm
is a Norwegian (Bokmål) pipeline optimized for CPU. For more details, please visit https://spacy.io/models/nb#nb_core_news_sm.
✨ Features
- Optimized for CPU, suitable for various token - classification tasks such as NER, TAG, POS, etc.
- It contains multiple components like
tok2vec
,morphologizer
,parser
, etc., which can handle different aspects of text processing.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | nb_core_news_sm |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD Norwegian Bokmaal v2.8 (Øvrelid, Lilja; Jørgensen, Fredrik; Hohle, Petter) NorNE: Norwegian Named Entities (commit: bd311de5) (Language Technology Group (University of Oslo)) |
License | MIT |
Author | Explosion |
Label Scheme
View label scheme (249 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , POS=CCONJ , Definite=Ind|Gender=Masc|Number=Sing|POS=NOUN , POS=SCONJ , Definite=Def|Gender=Masc|Number=Sing|POS=NOUN , Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=PUNCT , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin , POS=ADP , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , POS=PROPN , POS=X , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin , Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , POS=PRON|PronType=Rel , Mood=Ind|POS=AUX|Tense=Pres|VerbForm=Fin , Definite=Ind|Gender=Neut|Number=Sing|POS=ADJ|VerbForm=Part , Definite=Ind|Degree=Pos|Number=Sing|POS=ADJ , Definite=Ind|Gender=Fem|Number=Sing|POS=NOUN , Number=Plur|POS=ADJ|VerbForm=Part , Definite=Ind|Gender=Fem|Number=Plur|POS=NOUN , POS=ADV , Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Definite=Ind|Number=Sing|POS=ADJ|VerbForm=Part , POS=VERB|VerbForm=Part , Definite=Ind|Gender=Masc|Number=Plur|POS=NOUN , Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Degree=Pos|Number=Plur|POS=ADJ , NumType=Card|Number=Plur|POS=NUM , Definite=Def|Gender=Masc|Number=Plur|POS=NOUN , Case=Acc|POS=PRON|PronType=Prs|Reflex=Yes , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , POS=PART , POS=VERB|VerbForm=Inf , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Mood=Ind|POS=AUX|Tense=Past|VerbForm=Fin , Gender=Fem|POS=PROPN , POS=NOUN , Gender=Masc|POS=PROPN , Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Gen|Definite=Def|Gender=Masc|Number=Sing|POS=NOUN , Abbr=Yes|POS=PROPN , POS=PART|Polarity=Neg , Number=Plur|POS=PRON|Poss=Yes|PronType=Prs , Case=Gen|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , Case=Gen|POS=PROPN , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Definite=Def|Degree=Sup|POS=ADJ , Case=Gen|Gender=Fem|POS=PROPN , Number=Plur|POS=DET|PronType=Dem , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , Definite=Ind|Degree=Sup|POS=ADJ , Definite=Def|Gender=Fem|Number=Plur|POS=NOUN , Gender=Neut|POS=PROPN , Number=Plur|POS=DET|PronType=Int , Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Definite=Def|POS=DET|PronType=Dem , Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , Abbr=Yes|Case=Gen|POS=PROPN , Animacy=Hum|Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Degree=Cmp|POS=ADJ , POS=ADJ|VerbForm=Part , Gender=Neut|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Abbr=Yes|POS=ADP , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Prs , Case=Gen|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , POS=AUX|VerbForm=Part , POS=PRON|PronType=Int , Gender=Fem|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Number=Plur|POS=PRON|Person=3|PronType=Ind,Prs , Number=Plur|POS=DET|PronType=Ind , Degree=Pos|POS=ADJ , Animacy=Hum|Case=Nom|Number=Plur|POS=PRON|Person=1|PronType=Prs , POS=VERB|VerbForm=Inf|Voice=Pass , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Animacy=Hum|Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Animacy=Hum|Case=Nom|Number=Sing|POS=PRON|Person=1|PronType=Prs , Number=Plur|POS=DET|Polarity=Neg|PronType=Neg , NumType=Card|POS=NUM , Gender=Masc|Number=Sing|POS=DET|PronType=Ind , POS=DET|PronType=Prs , Gender=Fem|Number=Sing|POS=DET|PronType=Ind , Case=Gen|Gender=Neut|POS=PROPN , Gender=Masc|Number=Sing|POS=DET|Polarity=Neg|PronType=Neg , Definite=Def|Number=Sing|POS=ADJ|VerbForm=Part , Gender=Fem,Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , POS=AUX|VerbForm=Inf , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Number=Plur|POS=DET|PronType=Tot , Case=Gen|Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Number=Plur|POS=DET|PronType=Prs , POS=SYM , Gender=Neut|NumType=Card|Number=Sing|POS=NUM , Animacy=Hum|Case=Nom|Number=Sing|POS=PRON|PronType=Prs , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Prs , Case=Gen|Definite=Ind|Gender=Masc|Number=Sing|POS=NOUN , Abbr=Yes|POS=ADV , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=DET|PronType=Tot , Definite=Def|POS=DET|PronType=Prs , Animacy=Hum|Case=Nom|Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Neut|POS=NOUN , Gender=Neut|Number=Sing|POS=DET|PronType=Int , Definite=Def|NumType=Card|POS=NUM , Mood=Imp|POS=VERB|VerbForm=Fin , Definite=Ind|Number=Plur|POS=NOUN , Gender=Neut|Number=Sing|POS=DET|PronType=Tot , Gender=Fem|Number=Sing|POS=DET|PronType=Tot , Animacy=Hum|Case=Acc|Number=Plur|POS=PRON|Person=1|PronType=Prs , Gender=Fem,Masc|Number=Sing|POS=PRON|Person=3|Polarity=Neg|PronType=Neg,Prs , Number=Plur|POS=PRON|Person=3|Polarity=Neg|PronType=Neg,Prs , Definite=Def|NumType=Card|Number=Sing|POS=NUM , Gender=Masc|NumType=Card|Number=Sing|POS=NUM , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Case=Gen|Definite=Def|Gender=Fem|Number=Plur|POS=NOUN , Case=Gen|Gender=Neut|Number=Sing|POS=DET|PronType=Dem , POS=SPACE , Animacy=Hum|Number=Sing|POS=PRON|PronType=Art,Prs , Mood=Imp|POS=AUX|VerbForm=Fin , Number=Plur|POS=PRON|Person=3|PronType=Prs,Tot , Number=Plur|POS=ADJ , Gender=Masc|POS=NOUN , Abbr=Yes|POS=NOUN , Case=Gen|Definite=Ind|Gender=Masc|Number=Plur|POS=NOUN , Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Ind,Prs , POS=INTJ , Animacy=Hum|Case=Nom|Number=Sing|POS=PRON|Person=2|PronType=Prs , Animacy=Hum|Case=Acc|Number=Sing|POS=PRON|Person=1|PronType=Prs , Case=Gen|Definite=Def|Gender=Masc|Number=Plur|POS=NOUN , POS=ADJ , Animacy=Hum|Case=Acc|Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Animacy=Hum|Case=Acc|Number=Sing|POS=PRON|Person=2|PronType=Prs , Definite=Def|Gender=Fem|Number=Sing|POS=NOUN , Number=Sing|POS=PRON|Polarity=Neg|PronType=Neg , Case=Gen|POS=NOUN , Definite=Ind|Number=Sing|POS=ADJ , Case=Gen|Gender=Masc|POS=PROPN , Animacy=Hum|Number=Plur|POS=PRON|PronType=Rcp , Case=Gen|Definite=Ind|Gender=Fem|Number=Sing|POS=NOUN , Number=Plur|POS=PRON|Person=3|PronType=Prs , Gender=Fem,Masc|Number=Sing|POS=PRON|Person=3|PronType=Ind,Prs , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Prs , Case=Gen|Definite=Def|Gender=Fem|Number=Sing|POS=NOUN , Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Int , NumType=Card|Number=Sing|POS=NUM , Animacy=Hum|Case=Acc|Number=Plur|POS=PRON|Person=2|PronType=Prs , Animacy=Hum|Case=Nom|Number=Plur|POS=PRON|Person=2|PronType=Prs , Case=Gen|Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Degree=Sup|POS=ADJ , Animacy=Hum|POS=PRON|PronType=Int , POS=DET|PronType=Ind , Definite=Def|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|POS=NOUN , Case=Gen|Number=Plur|POS=DET|PronType=Dem , Gender=Fem,Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs,Tot , Case=Gen|Definite=Ind|Gender=Fem|Number=Plur|POS=NOUN , Gender=Neut|Number=Sing|POS=DET|Polarity=Neg|PronType=Neg , Number=Plur|POS=NOUN , POS=PRON|PronType=Prs , Case=Gen|Definite=Ind|Degree=Pos|Number=Sing|POS=ADJ , Definite=Ind|Number=Sing|POS=VERB|VerbForm=Part , Case=Gen|Definite=Def|Number=Sing|POS=ADJ|VerbForm=Part , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Gender=Neut|Number=Sing|POS=DET|PronType=Dem,Ind , Animacy=Hum|POS=PRON|Poss=Yes|PronType=Int , Abbr=Yes|POS=ADJ , Case=Gen|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Sing|POS=NOUN , Case=Gen|Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Number=Plur|POS=PRON|Poss=Yes|PronType=Rcp , Definite=Ind|Degree=Pos|POS=ADJ , Number=Plur|POS=DET|PronType=Art , Case=Gen|NumType=Card|Number=Plur|POS=NUM , Abbr=Yes|Definite=Def,Ind|Gender=Neut|Number=Plur,Sing|POS=NOUN , Case=Gen|Number=Plur|POS=DET|PronType=Tot , Abbr=Yes|Definite=Def,Ind|Gender=Masc|Number=Plur,Sing|POS=NOUN , Gender=Fem|Number=Sing|POS=DET|PronType=Int , Definite=Ind|Gender=Neut|Number=Sing|POS=ADJ , Case=Gen|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|Number=Sing|POS=DET|PronType=Prs , Animacy=Hum|Case=Gen,Nom|Number=Sing|POS=PRON|PronType=Art,Prs , Definite=Def|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Hum|Case=Gen|Number=Sing|POS=PRON|PronType=Art,Prs , Gender=Fem|NumType=Card|Number=Sing|POS=NUM , Definite=Ind|Gender=Masc|POS=NOUN , Definite=Def|Number=Plur|POS=NOUN , Number=Sing|POS=ADJ|VerbForm=Part , Definite=Ind|Gender=Masc|Number=Sing|POS=ADJ|VerbForm=Part , Abbr=Yes|Gender=Masc|POS=NOUN , Abbr=Yes|Case=Gen|POS=NOUN , Abbr=Yes|Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin , Abbr=Yes|Degree=Pos|POS=ADJ , Case=Gen|Gender=Fem|POS=NOUN , Case=Gen|Degree=Cmp|POS=ADJ , Definite=Ind|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=NOUN |
parser |
ROOT , acl , acl:cleft , acl:relcl , advcl , advmod , amod , appos , aux , aux:pass , case , cc , ccomp , compound , compound:prt , conj , cop , csubj , dep , det , discourse , expl , flat:foreign , flat:name , iobj , mark , nmod , nsubj , nsubj:pass , nummod , obj , obl , orphan , parataxis , punct , xcomp |
ner |
DRV , EVT , GPE_LOC , GPE_ORG , LOC , MISC , ORG , PER , PROD |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.81 |
TOKEN_P |
99.71 |
TOKEN_R |
99.53 |
TOKEN_F |
99.62 |
POS_ACC |
96.74 |
MORPH_ACC |
95.32 |
MORPH_MICRO_P |
97.02 |
MORPH_MICRO_R |
96.07 |
🔧 Technical Details
The model is a Norwegian (Bokmål) pipeline optimized for CPU. It consists of multiple components, each with its own specific functions:
- tok2vec: Converts tokens into vector representations.
- morphologizer: Analyzes the morphological features of words.
- parser: Parses the syntactic structure of sentences.
- lemmatizer: Reduces words to their base or dictionary form.
- senter: Identifies sentence boundaries.
- ner: Performs named - entity recognition.
- attribute_ruler: Applies custom rules for attribute assignment.
The model has been trained on specific datasets, including UD Norwegian Bokmaal v2.8 and NorNE: Norwegian Named Entities (commit: bd311de5).
📄 License
This project is licensed under the MIT
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models