Ru Core News Lg
Large Russian NLP model provided by spaCy, optimized for CPU, featuring a complete NLP processing pipeline
Downloads 74
Release Time : 3/2/2022
Model Overview
Large-scale Russian NLP model based on Nerus and Navec pretraining, supporting tasks like POS tagging, dependency parsing, named entity recognition, specifically optimized for Russian text processing
Model Features
CPU optimization
Russian NLP pipeline specifically optimized for CPU processing
Complete NLP components
Includes complete NLP processing components like POS tagging, morphological analysis, dependency parsing, and named entity recognition
High-quality pretraining
Russian pretrained vectors based on Nerus and Navec, containing 500,000+ unique vectors
Model Capabilities
POS tagging
Named entity recognition
Dependency parsing
Morphological analysis
Lemmatization
Sentence segmentation
Use Cases
Text analysis
Russian text parsing
Performs grammatical and structural analysis on Russian texts like news and articles
Can identify linguistic features such as POS tags and dependency relations
Information extraction
Russian entity recognition
Identifies entities like person names, locations, and organizations from Russian texts
NER F-score reaches 0.953
🚀 ru_core_news_lg
ru_core_news_lg
is a Russian language processing pipeline optimized for CPU. It can efficiently handle various natural language processing tasks, such as token classification, named entity recognition, and morphological analysis.
📚 Documentation
Details: https://spacy.io/models/ru#ru_core_news_lg
This Russian pipeline is optimized for CPU. Its components include tok2vec, morphologizer, parser, senter, ner, attribute_ruler, and lemmatizer.
Property | Details |
---|---|
Name | ru_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 500002 keys, 500002 unique vectors (300 dimensions) |
Sources | Nerus (Alexander Kukushkin) Navec (Alexander Kukushkin) |
License | MIT |
Author | Explosion |
Model Index
The ru_core_news_lg
model has been evaluated on multiple token - classification tasks, and here are the results:
Task Name | Metric Name | Metric Type | Value |
---|---|---|---|
NER | NER Precision | precision | 0.9524209818 |
NER | NER Recall | recall | 0.9535431745 |
NER | NER F Score | f_score | 0.9529817478 |
TAG | TAG (XPOS) Accuracy | accuracy | 0.989280677 |
POS | POS (UPOS) Accuracy | accuracy | 0.989280677 |
MORPH | Morph (UFeats) Accuracy | accuracy | 0.9749177029 |
LEMMA | Lemma Accuracy | accuracy | 2.15295e - 05 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | f_score | 0.962198055 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | f_score | 0.9511948091 |
SENTS | Sentences F - Score | f_score | 0.9985729236 |
Label Scheme
View label scheme (900 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
Case=Nom|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Anim|Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Acc|POS=NUM , Animacy=Inan|Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Case=Gen|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , POS=ADP , Case=Gen|Gender=Fem|Number=Sing|POS=DET , Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing|POS=NOUN , POS=PUNCT , Degree=Pos|POS=ADV , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Animacy=Anim|Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Case=Loc|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Loc|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=PRON , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Nom|Gender=Neut|Number=Sing|POS=NOUN , Foreign=Yes|POS=PROPN , Case=Loc|Gender=Fem|Number=Sing|POS=NUM , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing|POS=NOUN , POS=NUM , Animacy=Inan|Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Ins|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Inan|Case=Dat|Gender=Neut|Number=Sing|POS=NOUN , POS=DET , Animacy=Inan|Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Fem|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Dat|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=SCONJ , Animacy=Inan|Case=Ins|Gender=Neut|Number=Sing|POS=NOUN , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=Third , Case=Acc|POS=NUM , Case=Ins|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Ins|Gender=Masc|Number=Plur|POS=NOUN , POS=CCONJ , Case=Nom|POS=NUM , Animacy=Inan|Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Gender=Masc|Number=Sing|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Case=Nom|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Ins|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Gender=Masc|Number=Sing|POS=DET , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Acc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Nom|Gender=Fem|Number=Sing|POS=PRON , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Mid , Case=Ins|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Case=Dat|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Fem|Number=Sing|POS=NOUN , Animacy=Inan|Case=Gen|Gender=Neut|Number=Sing|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Neut|Number=Plur|POS=NOUN , Degree=Pos|Number=Plur|POS=ADJ|StyleVariant=Short , Aspect=Imp|Mood=Ind|Number=Plur|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Aspect=Perf|POS=VERB|VerbForm=Inf|Voice=Act , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=PRON , Case=Loc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing|POS=NOUN , Animacy=Inan|Case=Loc|Gender=Masc|Number=Plur|POS=NOUN , Case=Gen|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Aspect=Perf|Number=Plur|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Anim|Case=Acc|Gender=Masc|POS=NUM , Animacy=Anim|Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Anim|Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Mood=Cnd|POS=SCONJ , Case=Nom|Number=Plur|POS=PRON|Person=Third , POS=PART|Polarity=Neg , Aspect=Imp|POS=VERB|VerbForm=Inf|Voice=Mid , Animacy=Inan|Aspect=Perf|Case=Acc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Acc|Gender=Fem|Number=Plur|POS=NOUN , POS=SPACE , Case=Nom|Number=Plur|POS=DET , Aspect=Imp|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Animacy=Anim|Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , Animacy=Anim|Case=Acc|Number=Plur|POS=PRON , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=NOUN , Case=Gen|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Animacy=Anim|Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=INTJ , Animacy=Inan|Case=Loc|Gender=Fem|Number=Plur|POS=NOUN , Animacy=Inan|Case=Nom|Gender=Neut|Number=Sing|POS=PRON , Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Case=Nom|Number=Plur|POS=PRON , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Aspect=Imp|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ|StyleVariant=Short , Case=Gen|Gender=Masc|Number=Sing|POS=PRON|Person=Third , Case=Gen|POS=PRON , Animacy=Inan|Case=Dat|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|POS=VERB|VerbForm=Inf|Voice=Act , Animacy=Anim|Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=PRON|Person=Third , Animacy=Inan|Case=Acc|Number=Plur|POS=DET , Case=Nom|POS=PRON , Animacy=Anim|Case=Ins|Gender=Masc|Number=Plur|POS=NOUN , POS=ADJ , Case=Loc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Gen|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Imp|Mood=Ind|Number=Sing|POS=AUX|Person=Third|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Gender=Fem|Number=Sing|POS=PRON|Person=Third , Case=Ins|Gender=Masc|Number=Sing|POS=DET , Animacy=Inan|Case=Ins|Gender=Masc|Number=Sing|POS=NOUN , Aspect=Perf|Case=Acc|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=NOUN , Animacy=Inan|Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , Case=Nom|Number=Sing|POS=PRON|Person=First , Aspect=Imp|Mood=Ind|Number=Sing|POS=VERB|Person=First|Tense=Pres|VerbForm=Fin|Voice=Act , Animacy=Inan|Case=Acc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Mood=Cnd|POS=AUX , Case=Nom|Number=Plur|POS=PRON|Person=First , Case=Gen|Number=Plur|POS=DET , Animacy=Inan|Case=Ins|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|Case=Gen|Gender=Masc|Number=Sing|POS=VERB|Tense=Pres|VerbForm=Part|Voice=Act , Animacy=Inan|Case=Ins|Gender=Neut|Number=Sing|POS=PRON , Aspect=Perf|POS=VERB|VerbForm=Inf|Voice=Mid , Aspect=Perf|Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Act , Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing|POS=PROPN , Animacy=Inan|Case=Acc|Gender=Neut|Number=Sing|POS=DET , POS=PART , Case=Dat|Gender=Masc|Number=Sing|POS=DET , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Mid , Aspect=Perf|Gender=Masc|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Case=Nom|Gender=Masc|Number=Sing|POS=NUM , Animacy=Anim|Case=Dat|Gender=Fem|Number=Sing|POS=PROPN , Aspect=Perf|Mood=Ind|Number=Sing|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Mid , Case=Loc|Gender=Masc|Number=Sing|POS=DET , Aspect=Perf|Gender=Neut|Mood=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ|StyleVariant=Short , Animacy=Inan|Case=Gen|Gender=Neut|Number=Plur|POS=NOUN , Animacy=Anim|Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|Person=Third , Aspect=Perf|Gender=Neut|Number=Sing|POS=VERB|StyleVariant=Short|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Fem|Number=Sing|POS=PROPN , Animacy=Inan|Case=Acc|Gender=Masc|Number=Plur|POS=NOUN , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Person=Third|Tense=Fut|VerbForm=Fin|Voice=Act , Aspect=Perf|Mood=Ind|Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Mid , Animacy=Inan|Case=Gen|Gender=Neut|Number=Sing|POS=PRON , Aspect=Perf|Case=Loc|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part|Voice=Pass , Animacy=Inan|Case=Loc|Gender=Neut|Number=Sing|POS=PROPN , Case=Dat|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Animacy=Inan|Case=Dat|Gender=Masc|Number=Plur|POS=PROPN , Animacy=Inan|Case=Acc|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing|POS=PROPN , Aspect=Imp|POS=VERB|Tense=Pres|VerbForm=Conv|Voice=Act , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Animacy=Inan|Case=Ins|Gender=Fem|Number=Sing|POS=NOUN , Aspect=Imp|Gender=Neut|Mood=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Aspect=Imp|Case=Nom|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part|Voice=Act , Case=Gen|POS=NUM , Animacy=Inan|Case=Acc|Gender=Masc|POS=NUM , Aspect=Imp|Case=Gen|Number=Plur|POS=VERB|Tense=Pres|V |
📄 License
This project is licensed under the MIT license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models