🚀 Japanese Sentence-BERT Model (Version 2)
This is a Japanese Sentence-BERT model (Version 2). It is an improved version trained with a better loss function, MultipleNegativesRankingLoss, compared to Version 1. In our private dataset, it achieved about 1.5 - 2 percentage points higher accuracy than Version 1.
We used the pre-trained model cl-tohoku/bert-base-japanese-whole-word-masking. Therefore, fugashi and ipadic are required for inference (pip install fugashi ipadic).
🚀 Quick Start
Installation
To use this model, you need to install the necessary dependencies. You can install fugashi and ipadic using the following command:
pip install fugashi ipadic
Usage
Here is an example of how to use the model:
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2"
model = SentenceBertJapanese(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
📚 Documentation
Explanation of the Old Version
You can find the explanation of the old version here. If you change the model name to "sonoisa/sentence-bert-base-ja-mean-tokens-v2", it will use this model.
📄 License
This project is licensed under the CC BY-SA 4.0 license.
📋 Information Table
Property |
Details |
Model Type |
Sentence-BERT |
Training Data |
Not specified |
License |
CC BY-SA 4.0 |
Tags |
sentence-transformers, sentence-bert, feature-extraction, sentence-similarity |