Mmlw Roberta Base
Model Overview
Model Features
Model Capabilities
Use Cases
pipeline_tag: sentence-similarity tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb model-index:
- name: mmlw-roberta-base
results:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- type: v_measure value: 33.08463724780795
- task:
type: Classification
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: default
split: test
revision: None
metrics:
- type: accuracy value: 40.25844930417495
- type: f1 value: 35.59685265418916
- task:
type: Retrieval
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 33.073
- type: map_at_10 value: 50.223
- type: map_at_100 value: 50.942
- type: map_at_1000 value: 50.94499999999999
- type: map_at_3 value: 45.721000000000004
- type: map_at_5 value: 48.413000000000004
- type: mrr_at_1 value: 34.424
- type: mrr_at_10 value: 50.68899999999999
- type: mrr_at_100 value: 51.437999999999995
- type: mrr_at_1000 value: 51.441
- type: mrr_at_3 value: 46.219
- type: mrr_at_5 value: 48.921
- type: ndcg_at_1 value: 33.073
- type: ndcg_at_10 value: 59.021
- type: ndcg_at_100 value: 61.902
- type: ndcg_at_1000 value: 61.983999999999995
- type: ndcg_at_3 value: 49.818
- type: ndcg_at_5 value: 54.644999999999996
- type: precision_at_1 value: 33.073
- type: precision_at_10 value: 8.684
- type: precision_at_100 value: 0.9900000000000001
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 20.555
- type: precision_at_5 value: 14.666
- type: recall_at_1 value: 33.073
- type: recall_at_10 value: 86.842
- type: recall_at_100 value: 99.004
- type: recall_at_1000 value: 99.644
- type: recall_at_3 value: 61.663999999999994
- type: recall_at_5 value: 73.329
- task:
type: Classification
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: default
split: test
revision: None
metrics:
- type: accuracy value: 68.11
- type: ap value: 20.916633959031266
- type: f1 value: 56.85804802205465
- task:
type: PairClassification
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 89.2
- type: cos_sim_ap value: 79.1041156765933
- type: cos_sim_f1 value: 70.0
- type: cos_sim_precision value: 74.11764705882354
- type: cos_sim_recall value: 66.3157894736842
- type: dot_accuracy value: 88.2
- type: dot_ap value: 72.57183688228149
- type: dot_f1 value: 67.16417910447761
- type: dot_precision value: 63.67924528301887
- type: dot_recall value: 71.05263157894737
- type: euclidean_accuracy value: 89.3
- type: euclidean_ap value: 79.01345533432428
- type: euclidean_f1 value: 70.19498607242339
- type: euclidean_precision value: 74.55621301775149
- type: euclidean_recall value: 66.3157894736842
- type: manhattan_accuracy value: 89.3
- type: manhattan_ap value: 79.01671381791259
- type: manhattan_f1 value: 70.0280112044818
- type: manhattan_precision value: 74.8502994011976
- type: manhattan_recall value: 65.78947368421053
- type: max_accuracy value: 89.3
- type: max_ap value: 79.1041156765933
- type: max_f1 value: 70.19498607242339
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 91.79559442663039
- type: cos_sim_spearman value: 92.5438168962641
- type: euclidean_pearson value: 92.02981265332856
- type: euclidean_spearman value: 92.5548245733484
- type: manhattan_pearson value: 91.95296287979178
- type: manhattan_spearman value: 92.50279516120241
- task:
type: Retrieval
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 7.829999999999999
- type: map_at_10 value: 16.616
- type: map_at_100 value: 23.629
- type: map_at_1000 value: 25.235999999999997
- type: map_at_3 value: 12.485
- type: map_at_5 value: 14.077
- type: mrr_at_1 value: 61.75000000000001
- type: mrr_at_10 value: 69.852
- type: mrr_at_100 value: 70.279
- type: mrr_at_1000 value: 70.294
- type: mrr_at_3 value: 68.375
- type: mrr_at_5 value: 69.187
- type: ndcg_at_1 value: 49.75
- type: ndcg_at_10 value: 36.217
- type: ndcg_at_100 value: 41.235
- type: ndcg_at_1000 value: 48.952
- type: ndcg_at_3 value: 41.669
- type: ndcg_at_5 value: 38.285000000000004
- type: precision_at_1 value: 61.5
- type: precision_at_10 value: 28.499999999999996
- type: precision_at_100 value: 9.572
- type: precision_at_1000 value: 2.025
- type: precision_at_3 value: 44.083
- type: precision_at_5 value: 36.3
- type: recall_at_1 value: 7.829999999999999
- type: recall_at_10 value: 21.462999999999997
- type: recall_at_100 value: 47.095
- type: recall_at_1000 value: 71.883
- type: recall_at_3 value: 13.891
- type: recall_at_5 value: 16.326999999999998
- task:
type: Retrieval
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 16.950000000000003
- type: map_at_10 value: 27.422
- type: map_at_100 value: 29.146
- type: map_at_1000 value: 29.328
- type: map_at_3 value: 23.735999999999997
- type: map_at_5 value: 25.671
- type: mrr_at_1 value: 33.796
- type: mrr_at_10 value: 42.689
- type: mrr_at_100 value: 43.522
- type: mrr_at_1000 value: 43.563
- type: mrr_at_3 value: 40.226
- type: mrr_at_5 value: 41.685
- type: ndcg_at_1 value: 33.642
- type: ndcg_at_10 value: 35.008
- type: ndcg_at_100 value: 41.839
- type: ndcg_at_1000 value: 45.035
- type: ndcg_at_3 value: 31.358999999999998
- type: ndcg_at_5 value: 32.377
- type: precision_at_1 value: 33.642
- type: precision_at_10 value: 9.937999999999999
- type: precision_at_100 value: 1.685
- type: precision_at_1000 value: 0.22699999999999998
- type: precision_at_3 value: 21.142
- type: precision_at_5 value: 15.586
- type: recall_at_1 value: 16.950000000000003
- type: recall_at_10 value: 42.286
- type: recall_at_100 value: 68.51899999999999
- type: recall_at_1000 value: 87.471
- type: recall_at_3 value: 28.834
- type: recall_at_5 value: 34.274
- task:
type: Retrieval
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 37.711
- type: map_at_10 value: 57.867999999999995
- type: map_at_100 value: 58.77
- type: map_at_1000 value: 58.836999999999996
- type: map_at_3 value: 54.400999999999996
- type: map_at_5 value: 56.564
- type: mrr_at_1 value: 75.449
- type: mrr_at_10 value: 81.575
- type: mrr_at_100 value: 81.783
- type: mrr_at_1000 value: 81.792
- type: mrr_at_3 value: 80.50399999999999
- type: mrr_at_5 value: 81.172
- type: ndcg_at_1 value: 75.422
- type: ndcg_at_10 value: 66.635
- type: ndcg_at_100 value: 69.85
- type: ndcg_at_1000 value: 71.179
- type: ndcg_at_3 value: 61.648
- type: ndcg_at_5 value: 64.412
- type: precision_at_1 value: 75.422
- type: precision_at_10 value: 13.962
- type: precision_at_100 value: 1.649
- type: precision_at_1000 value: 0.183
- type: precision_at_3 value: 39.172000000000004
- type: precision_at_5 value: 25.691000000000003
- type: recall_at_1 value: 37.711
- type: recall_at_10 value: 69.811
- type: recall_at_100 value: 82.471
- type: recall_at_1000 value: 91.29
- type: recall_at_3 value: 58.757999999999996
- type: recall_at_5 value: 64.227
- task:
type: Retrieval
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: default
split: validation
revision: None
metrics:
- type: map_at_1 value: 17.033
- type: map_at_10 value: 27.242
- type: map_at_100 value: 28.451999999999998
- type: map_at_1000 value: 28.515
- type: map_at_3 value: 24.046
- type: map_at_5 value: 25.840999999999998
- type: mrr_at_1 value: 17.493
- type: mrr_at_10 value: 27.67
- type: mrr_at_100 value: 28.823999999999998
- type: mrr_at_1000 value: 28.881
- type: mrr_at_3 value: 24.529999999999998
- type: mrr_at_5 value: 26.27
- type: ndcg_at_1 value: 17.479
- type: ndcg_at_10 value: 33.048
- type: ndcg_at_100 value: 39.071
- type: ndcg_at_1000 value: 40.739999999999995
- type: ndcg_at_3 value: 26.493
- type: ndcg_at_5 value: 29.701
- type: precision_at_1 value: 17.479
- type: precision_at_10 value: 5.324
- type: precision_at_100 value: 0.8380000000000001
- type: precision_at_1000 value: 0.098
- type: precision_at_3 value: 11.408999999999999
- type: precision_at_5 value: 8.469999999999999
- type: recall_at_1 value: 17.033
- type: recall_at_10 value: 50.929
- type: recall_at_100 value: 79.262
- type: recall_at_1000 value: 92.239
- type: recall_at_3 value: 33.06
- type: recall_at_5 value: 40.747
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy value: 72.31002017484867
- type: f1 value: 69.61603671063031
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy value: 75.52790854068594
- type: f1 value: 75.4053872472259
- task:
type: Retrieval
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 5.877000000000001
- type: map_at_10 value: 12.817
- type: map_at_100 value: 16.247
- type: map_at_1000 value: 17.683
- type: map_at_3 value: 9.334000000000001
- type: map_at_5 value: 10.886999999999999
- type: mrr_at_1 value: 45.201
- type: mrr_at_10 value: 52.7
- type: mrr_at_100 value: 53.425999999999995
- type: mrr_at_1000 value: 53.461000000000006
- type: mrr_at_3 value: 50.464
- type: mrr_at_5 value: 51.827
- type: ndcg_at_1 value: 41.949999999999996
- type: ndcg_at_10 value: 34.144999999999996
- type: ndcg_at_100 value: 31.556
- type: ndcg_at_1000 value: 40.265
- type: ndcg_at_3 value: 38.07
- type: ndcg_at_5 value: 36.571
- type: precision_at_1 value: 44.272
- type: precision_at_10 value: 25.697
- type: precision_at_100 value: 8.077
- type: precision_at_1000 value: 2.084
- type: precision_at_3 value: 36.016999999999996
- type: precision_at_5 value: 31.703
- type: recall_at_1 value: 5.877000000000001
- type: recall_at_10 value: 16.986
- type: recall_at_100 value: 32.719
- type: recall_at_1000 value: 63.763000000000005
- type: recall_at_3 value: 10.292
- type: recall_at_5 value: 12.886000000000001
- task:
type: Retrieval
dataset:
type: nq-pl
name: MTEB NQ-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 25.476
- type: map_at_10 value: 38.67
- type: map_at_100 value: 39.784000000000006
- type: map_at_1000 value: 39.831
- type: map_at_3 value: 34.829
- type: map_at_5 value: 37.025000000000006
- type: mrr_at_1 value: 28.621000000000002
- type: mrr_at_10 value: 41.13
- type: mrr_at_100 value: 42.028
- type: mrr_at_1000 value: 42.059999999999995
- type: mrr_at_3 value: 37.877
- type: mrr_at_5 value: 39.763999999999996
- type: ndcg_at_1 value: 28.563
- type: ndcg_at_10 value: 45.654
- type: ndcg_at_100 value: 50.695
- type: ndcg_at_1000 value: 51.873999999999995
- type: ndcg_at_3 value: 38.359
- type: ndcg_at_5 value: 42.045
- type: precision_at_1 value: 28.563
- type: precision_at_10 value: 7.6450000000000005
- type: precision_at_100 value: 1.052
- type: precision_at_1000 value: 0.117
- type: precision_at_3 value: 17.458000000000002
- type: precision_at_5 value: 12.613
- type: recall_at_1 value: 25.476
- type: recall_at_10 value: 64.484
- type: recall_at_100 value: 86.96199999999999
- type: recall_at_1000 value: 95.872
- type: recall_at_3 value: 45.527
- type: recall_at_5 value: 54.029
- task:
type: Classification
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: default
split: test
revision: None
metrics:
- type: accuracy value: 65.87315377932232
- type: ap value: 76.41966964416534
- type: f1 value: 63.64417488639012
- task:
type: PairClassification
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 87.7
- type: cos_sim_ap value: 92.81319372631636
- type: cos_sim_f1 value: 90.04048582995952
- type: cos_sim_precision value: 88.11410459587957
- type: cos_sim_recall value: 92.05298013245033
- type: dot_accuracy value: 75.0
- type: dot_ap value: 83.63089957943261
- type: dot_f1 value: 80.76923076923077
- type: dot_precision value: 75.43103448275862
- type: dot_recall value: 86.9205298013245
- type: euclidean_accuracy value: 87.7
- type: euclidean_ap value: 92.94772245932825
- type: euclidean_f1 value: 90.10458567980692
- type: euclidean_precision value: 87.63693270735524
- type: euclidean_recall value: 92.71523178807946
- type: manhattan_accuracy value: 87.8
- type: manhattan_ap value: 92.95330512127123
- type: manhattan_f1 value: 90.08130081300813
- type: manhattan_precision value: 88.49840255591054
- type: manhattan_recall value: 91.72185430463577
- type: max_accuracy value: 87.8
- type: max_ap value: 92.95330512127123
- type: max_f1 value: 90.10458567980692
- task:
type: PairClassification
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 96.19666048237477
- type: cos_sim_ap value: 98.61237969571302
- type: cos_sim_f1 value: 93.77845220030349
- type: cos_sim_precision value: 93.35347432024169
- type: cos_sim_recall value: 94.20731707317073
- type: dot_accuracy value: 94.89795918367348
- type: dot_ap value: 97.02853491357943
- type: dot_f1 value: 91.85185185185186
- type: dot_precision value: 89.33717579250721
- type: dot_recall value: 94.51219512195121
- type: euclidean_accuracy value: 96.38218923933209
- type: euclidean_ap value: 98.58145584134218
- type: euclidean_f1 value: 94.04580152671755
- type: euclidean_precision value: 94.18960244648318
- type: euclidean_recall value: 93.90243902439023
- type: manhattan_accuracy value: 96.47495361781077
- type: manhattan_ap value: 98.6108221024781
- type: manhattan_f1 value: 94.18960244648318
- type: manhattan_precision value: 94.47852760736197
- type: manhattan_recall value: 93.90243902439023
- type: max_accuracy value: 96.47495361781077
- type: max_ap value: 98.61237969571302
- type: max_f1 value: 94.18960244648318
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: default
split: test
revision: None
metrics:
- type: accuracy value: 71.73130193905818
- type: f1 value: 71.17731918813324
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: default
split: test
revision: None
metrics:
- type: accuracy value: 46.59919028340081
- type: f1 value: 37.216392949948954
- task:
type: Retrieval
dataset:
type: quora-pl
name: MTEB Quora-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 66.134
- type: map_at_10 value: 80.19
- type: map_at_100 value: 80.937
- type: map_at_1000 value: 80.95599999999999
- type: map_at_3 value: 77.074
- type: map_at_5 value: 79.054
- type: mrr_at_1 value: 75.88000000000001
- type: mrr_at_10 value: 83.226
- type: mrr_at_100 value: 83.403
- type: mrr_at_1000 value: 83.406
- type: mrr_at_3 value: 82.03200000000001
- type: mrr_at_5 value: 82.843
- type: ndcg_at_1 value: 75.94
- type: ndcg_at_10 value: 84.437
- type: ndcg_at_100 value: 86.13
- type: ndcg_at_1000 value: 86.29299999999999
- type: ndcg_at_3 value: 81.07799999999999
- type: ndcg_at_5 value: 83.0
- type: precision_at_1 value: 75.94
- type: precision_at_10 value: 12.953999999999999
- type: precision_at_100 value: 1.514
- type: precision_at_1000 value: 0.156
- type: precision_at_3 value: 35.61
- type: precision_at_5 value: 23.652
- type: recall_at_1 value: 66.134
- type: recall_at_10 value: 92.991
- type: recall_at_100 value: 99.003
- type: recall_at_1000 value: 99.86
- type: recall_at_3 value: 83.643
- type: recall_at_5 value: 88.81099999999999
- task:
type: Retrieval
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 4.183
- type: map_at_10 value: 10.626
- type: map_at_100 value: 12.485
- type: map_at_1000 value: 12.793
- type: map_at_3 value: 7.531000000000001
- type: map_at_5 value: 9.037
- type: mrr_at_1 value: 20.5
- type: mrr_at_10 value: 30.175
- type: mrr_at_100 value: 31.356
- type: mrr_at_1000 value: 31.421
- type: mrr_at_3 value: 26.900000000000002
- type: mrr_at_5 value: 28.689999999999998
- type: ndcg_at_1 value: 20.599999999999998
- type: ndcg_at_10 value: 17.84
- type: ndcg_at_100 value: 25.518
- type: ndcg_at_1000 value: 31.137999999999998
- type: ndcg_at_3 value: 16.677
- type: ndcg_at_5 value: 14.641000000000002
- type: precision_at_1 value: 20.599999999999998
- type: precision_at_10 value: 9.3
- type: precision_at_100 value: 2.048
- type: precision_at_1000 value: 0.33999999999999997
- type: precision_at_3 value: 15.533
- type: precision_at_5 value: 12.839999999999998
- type: recall_at_1 value: 4.183
- type: recall_at_10 value: 18.862000000000002
- type: recall_at_100 value: 41.592
- type: recall_at_1000 value: 69.037
- type: recall_at_3 value: 9.443
- type: recall_at_5 value: 13.028
- task:
type: PairClassification
dataset:
type: PL-MTEB/sicke-pl-pairclassification
name: MTEB SICK-E-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 86.32286995515696
- type: cos_sim_ap value: 82.04302619416443
- type: cos_sim_f1 value: 74.95572086432874
- type: cos_sim_precision value: 74.55954897815363
- type: cos_sim_recall value: 75.35612535612536
- type: dot_accuracy value: 83.9176518548716
- type: dot_ap value: 76.8608733580272
- type: dot_f1 value: 72.31936654569449
- type: dot_precision value: 67.36324523663184
- type: dot_recall value: 78.06267806267806
- type: euclidean_accuracy value: 86.32286995515696
- type: euclidean_ap value: 81.9648986659308
- type: euclidean_f1 value: 74.93796526054591
- type: euclidean_precision value: 74.59421312632321
- type: euclidean_recall value: 75.28490028490027
- type: manhattan_accuracy value: 86.30248675091724
- type: manhattan_ap value: 81.92853980116878
- type: manhattan_f1 value: 74.80968858131489
- type: manhattan_precision value: 72.74562584118439
- type: manhattan_recall value: 76.99430199430199
- type: max_accuracy value: 86.32286995515696
- type: max_ap value: 82.04302619416443
- type: max_f1 value: 74.95572086432874
- task:
type: STS
dataset:
type: PL-MTEB/sickr-pl-sts
name: MTEB SICK-R-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 83.07566183637853
- type: cos_sim_spearman value: 79.20198022242548
- type: euclidean_pearson value: 81.27875473517936
- type: euclidean_spearman value: 79.21560102311153
- type: manhattan_pearson value: 81.21559474880459
- type: manhattan_spearman value: 79.1537846814979
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson value: 36.39657573900194
- type: cos_sim_spearman value: 40.36403461037013
- type: euclidean_pearson value: 29.143416004776316
- type: euclidean_spearman value: 40.43197841306375
- type: manhattan_pearson value: 29.18632337290767
- type: manhattan_spearman value: 40.50563343395481
- task:
type: Retrieval
dataset:
type: scifact-pl
name: MTEB SciFact-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 49.428
- type: map_at_10 value: 60.423
- type: map_at_100 value: 61.037
- type: map_at_1000 value: 61.065999999999995
- type: map_at_3 value: 56.989000000000004
- type: map_at_5 value: 59.041999999999994
- type: mrr_at_1 value: 52.666999999999994
- type: mrr_at_10 value: 61.746
- type: mrr_at_100 value: 62.273
- type: mrr_at_1000 value: 62.300999999999995
- type: mrr_at_3 value: 59.278
- type: mrr_at_5 value: 60.611000000000004
- type: ndcg_at_1 value: 52.333
- type: ndcg_at_10 value: 65.75
- type: ndcg_at_100 value: 68.566
- type: ndcg_at_1000 value: 69.314
- type: ndcg_at_3 value: 59.768
- type: ndcg_at_5 value: 62.808
- type: precision_at_1 value: 52.333
- type: precision_at_10 value: 9.167
- type: precision_at_100 value: 1.0630000000000002
- type: precision_at_1000 value: 0.11299999999999999
- type: precision_at_3 value: 23.778
- type: precision_at_5 value: 16.2
- type: recall_at_1 value: 49.428
- type: recall_at_10 value: 81.07799999999999
- type: recall_at_100 value: 93.93299999999999
- type: recall_at_1000 value: 99.667
- type: recall_at_3 value: 65.061
- type: recall_at_5 value: 72.667
- task:
type: Retrieval
dataset:
type: trec-covid-pl
name: MTEB TRECCOVID-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 0.22100000000000003
- type: map_at_10 value: 1.788
- type: map_at_100 value: 9.937
- type: map_at_1000 value: 24.762999999999998
- type: map_at_3 value: 0.579
- type: map_at_5 value: 0.947
- type: mrr_at_1 value: 78.0
- type: mrr_at_10 value: 88.067
- type: mrr_at_100 value: 88.067
- type: mrr_at_1000 value: 88.067
- type: mrr_at_3 value: 87.667
- type: mrr_at_5 value: 88.067
- type: ndcg_at_1 value: 76.0
- type: ndcg_at_10 value: 71.332
- type: ndcg_at_100 value: 54.80500000000001
- type: ndcg_at_1000 value: 49.504999999999995
- type: ndcg_at_3 value: 73.693
- type: ndcg_at_5 value: 73.733
- type: precision_at_1 value: 82.0
- type: precision_at_10 value: 76.8
- type: precision_at_100 value: 56.68
- type: precision_at_1000 value: 22.236
- type: precision_at_3 value: 78.667
- type: precision_at_5 value: 79.2
- type: recall_at_1 value: 0.22100000000000003
- type: recall_at_10 value: 2.033
- type: recall_at_100 value: 13.431999999999999
- type: recall_at_1000 value: 46.913
- type: recall_at_3 value: 0.625
- type: recall_at_5 value: 1.052 language: pl license: apache-2.0 widget:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- source_sentence: "zapytanie: Jak dożyć 100 lat?"
sentences:
- "Trzeba zdrowo się odżywiać i uprawiać sport."
- "Trzeba pić alkohol, imprezować i jeździć szybkimi autami."
- "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
MMLW-roberta-base
MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish. This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning. It transforms texts to 768 dimensional vectors. The model was initialized with Polish RoBERTa checkpoint, and then trained with multilingual knowledge distillation method on a diverse corpus of 60 million Polish-English text pairs. We utilised English FlagEmbeddings (BGE) as teacher models for distillation.
Usage (Sentence-Transformers)
⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, each query should be preceded by the prefix "zapytanie: " ⚠️
You can use the model like this with sentence-transformers:
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
query_prefix = "zapytanie: "
answer_prefix = ""
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model = SentenceTransformer("sdadas/mmlw-roberta-base")
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Trzeba zdrowo się odżywiać i uprawiać sport.
Evaluation Results
- The model achieves an Average Score of 61.05 on the Polish Massive Text Embedding Benchmark (MTEB). See MTEB Leaderboard for detailed results.
- The model achieves NDCG@10 of 53.60 on the Polish Information Retrieval Benchmark. See PIRB Leaderboard for detailed results.
Acknowledgements
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.
Citation
@article{dadas2024pirb,
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
year={2024},
eprint={2402.13350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}





