🚀 robbert-2022-dutch-sentence-transformers - Onnx
This Onnx model is a converted version of robbert-2022-dutch-sentence-transformers. It can map sentences & paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering or semantic search.
🚀 Quick Start
Prerequisites
You can use this model easily after installing sentence-transformers:
pip install -U sentence-transformers
Usage Example
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
✨ Features
- Based on KU Leuven's RobBERT model.
- Finetuned on the Paraphrase dataset, which has been machine-translated to Dutch.
- Can map sentences and paragraphs to a 768-dimensional dense vector space for clustering or semantic search.
📦 Installation
You can install the necessary library using the following command:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 Technical Details
Training Parameters
The model was trained with the following parameters:
DataLoader:
MultiDatasetDataLoader.MultiDatasetDataLoader
of length 414262 with parameters:
{'batch_size': 1}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 50000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Model Information
Property |
Details |
Model Type |
Onnx converted from robbert-2022-dutch-sentence-transformers |
Training Data |
NetherlandsForensicInstitute/AllNLI-translated-nl, NetherlandsForensicInstitute/altlex-translated-nl, NetherlandsForensicInstitute/coco-captions-translated-nl, NetherlandsForensicInstitute/flickr30k-captions-translated-nl, NetherlandsForensicInstitute/msmarco-translated-nl, NetherlandsForensicInstitute/quora-duplicates-translated-nl, NetherlandsForensicInstitute/sentence-compression-translated-nl, NetherlandsForensicInstitute/simplewiki-translated-nl, NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl, NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl |
Model Creators