🚀 snowflake-snowflake-arctic-embed-xs
This model is designed for sentence - similarity tasks and provides feature - extraction capabilities. It has been tested on multiple datasets in the MTEB benchmark, showing its performance in various NLP tasks such as classification, retrieval, clustering, reranking, and STS.
📚 Documentation
Model Information
Property |
Details |
Model Type |
Sentence Transformer for sentence - similarity and feature - extraction |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, mteb, arctic, snowflake - arctic - embed, transformers.js |
Results on Datasets
1. MTEB AmazonCounterfactualClassification (en)
- Task: Classification
- Metrics:
- Accuracy: 65.08955223880598
- AP: 28.514291209445364
- F1: 59.2604580112738
2. MTEB AmazonPolarityClassification
- Task: Classification
- Metrics:
- Accuracy: 70.035375
- AP: 64.29444264250405
- F1: 69.78382333907138
3. MTEB AmazonReviewsClassification (en)
- Task: Classification
- Metrics:
- Accuracy: 35.343999999999994
- F1: 34.69618251902858
4. MTEB ArguAna
- Task: Retrieval
- Metrics:
- MAP@1: 28.592000000000002
- MAP@10: 43.597
- MAP@100: 44.614
- MAP@1000: 44.624
- MAP@3: 38.928000000000004
- MAP@5: 41.453
- MRR@1: 29.232000000000003
- MRR@10: 43.829
- MRR@100: 44.852
- MRR@1000: 44.862
- MRR@3: 39.118
- MRR@5: 41.703
- NDCG@1: 28.592000000000002
- NDCG@10: 52.081
- NDCG@100: 56.37
- NDCG@1000: 56.598000000000006
- NDCG@3: 42.42
- NDCG@5: 46.965
- Precision@1: 28.592000000000002
- Precision@10: 7.922999999999999
- Precision@100: 0.979
- Precision@1000: 0.1
- Precision@3: 17.52
- Precision@5: 12.717
- Recall@1: 28.592000000000002
- Recall@10: 79.232
- Recall@100: 97.866
- Recall@1000: 99.57300000000001
- Recall@3: 52.559999999999995
- Recall@5: 63.585
5. MTEB ArxivClusteringP2P
- Task: Clustering
- Metrics:
- V - measure: 43.50220588953974
6. MTEB ArxivClusteringS2S
- Task: Clustering
- Metrics:
- V - measure: 32.08725826118282
7. MTEB AskUbuntuDupQuestions
- Task: Reranking
- Metrics:
- MAP: 60.25381587694928
- MRR: 73.79776194873148
8. MTEB BIOSSES
- Task: STS
- Metrics:
- Cosine Similarity Pearson: 85.47489332445278
- Cosine Similarity Spearman: 84.05432487336698
- Euclidean Pearson: 84.5108222177219
- Euclidean Spearman: 84.05432487336698
- Manhattan Pearson: 84.20440618321464
- Manhattan Spearman: 83.9290208134097
9. MTEB Banking77Classification
- Task: Classification
- Metrics:
- Accuracy: 76.37337662337663
- F1: 75.33296834885043
10. MTEB BigPatentClustering
- Task: Clustering
- Metrics:
- V - measure: 21.31174373264835
11. MTEB BiorxivClusteringP2P
- Task: Clustering
- Metrics:
- V - measure: 34.481973521597844
12. MTEB BiorxivClusteringS2S
- Task: Clustering
- Metrics:
- V - measure: 26.14094256567341
13. MTEB CQADupstackAndroidRetrieval
- Task: Retrieval
- Metrics:
- MAP@1: 32.527
- MAP@10: 43.699
- MAP@100: 45.03
- MAP@1000: 45.157000000000004
- MAP@3: 39.943
- MAP@5: 42.324
- MRR@1: 39.771
- MRR@10: 49.277
- MRR@100: 49.956
- MRR@1000: 50.005
- MRR@3: 46.304
- MRR@5: 48.493
- NDCG@1: 39.771
- NDCG@10: 49.957
- NDCG@100: 54.678000000000004
- NDCG@1000: 56.751
- NDCG@3: 44.608
- NDCG@5: 47.687000000000005
- Precision@1: 39.771
- Precision@10: 9.557
- Precision@100: 1.5010000000000001
- Precision@1000: 0.194
- Precision@3: 21.173000000000002
- Precision@5: 15.794
- Recall@1: 32.527
- Recall@10: 61.791
- Recall@100: 81.49300000000001
- Recall@1000: 95.014
- Recall@3: 46.605000000000004
- Recall@5: 54.83
14. MTEB CQADupstackEnglishRetrieval
- Task: Retrieval
- Metrics:
- MAP@1: 29.424
- MAP@10: 38.667
- MAP@100: 39.771
- MAP@1000: 39.899
- MAP@3: 35.91
- MAP@5: 37.45
- MRR@1: 36.687999999999995
- MRR@10: 44.673
- MRR@100: 45.289
- MRR@1000: 45.338
- MRR@3: 42.601
- MRR@5: 43.875
- NDCG@1: 36.687999999999995
- NDCG@10: 44.013000000000005
- NDCG@100: 48.13
- NDCG@1000: 50.294000000000004
- NDCG@3: 40.056999999999995
- NDCG@5: 41.902
- Precision@1: 36.687999999999995
- Precision@10: 8.158999999999999
- Precision@100: 1.321
- Precision@1000: 0.179
- Precision@3: 19.045
- Precision@5: 13.427
- Recall@1: 29.424
- Recall@10: 53.08500000000001
- Recall@100: 70.679
- Recall@1000: 84.66
- Recall@3: 41.399
- Recall@5: 46.632
15. MTEB CQADupstackGamingRetrieval
- Task: Retrieval
- Metrics:
- MAP@1: 39.747
- MAP@10: 51.452
- MAP@100: 52.384
- MAP@1000: 52.437
- MAP@3: 48.213
- MAP@5: 50.195
- MRR@1: 45.391999999999996
- MRR@10: 54.928
- MRR@100: 55.532000000000004
- MRR@1000: 55.565
- MRR@3: 52.456
- MRR@5: 54.054
- NDCG@1: 45.391999999999996
- NDCG@10: 57.055
- NDCG@100: 60.751999999999995
- NDCG@1000: 61.864
- NDCG@3: 51.662
- NDCG@5: 54.613
- Precision@1: 45.391999999999996
- Precision@10: 9.103
- Precision@100: 1.1780000000000002
- Precision@1000: 0.132
- Precision@3: 22.717000000000002
- Precision@5: 15.812000000000001
- Recall@1: 39.747
- Recall@10: 70.10499999999999
- Recall@100: 86.23100000000001
- Recall@1000: 94.025
- Recall@3: 55.899
- Recall@5: 63.05500000000001
16. MTEB CQADupstackGisRetrieval
- Task: Retrieval
- Metrics:
- MAP@1: 27.168999999999997
- MAP@10: 34.975
- MAP@100: 35.94
- MAP@1000: 36.021
- MAP@3: 32.35
- MAP@5: 33.831
- MRR@1: 28.701
- MRR@10: 36.698
- MRR@100: 37.546
- MRR@1000: 37.613
- MRR@3: 34.256
- MRR@5: 35.685
- NDCG@1: 28.701
- NDCG@10: 39.639
- NDCG@100: 44.389
- NDCG@1000: 46.46
- NDCG@3: 34.52
- NDCG@5: 37.076
- Precision@1: 28.701
- Precision@10: 5.955
- Precision@100: 0.8880000000000001
- Precision@1000: 0.109
- Precision@3: 14.274999999999999
- Precision@5: 10.011000000000001
- Recall@1: 27.168999999999997
- Recall@10: 52.347
- Recall@100: 74.1
- Recall@1000: 89.739
- Recall@3: 38.567
- Recall@5: 44.767
17. MTEB CQADupstackMathematicaRetrieval
- Task: Retrieval
- Metrics:
- MAP@1: 15.872
- MAP@10: 23.153000000000002
- MAP@100: 24.311
- MAP@1000: 24.432000000000002
- MAP@3: 20.707
- MAP@5: 21.921
- MRR@1: 19.776
- MRR@10: 27.755999999999997
- MRR@100: 28.709
- MRR@1000: 28.778
- MRR@3: 25.186999999999998
- MRR@5: 26. (The data seems incomplete here)