🚀 Sentence-Transformers
Sentence-Transformers is a library for computing sentence embeddings and performing sentence similarity tasks. It provides pre-trained models and tools for various NLP tasks.
📚 Documentation
Model Information
Property |
Details |
Library Name |
sentence-transformers |
Pipeline Tag |
sentence-similarity |
Tags |
feature-extraction, mteb, sentence-similarity, sentence-transformers, transformers |
Model Name |
NoInstruct-small-Embedding-v0 |
Evaluation Results
The model NoInstruct-small-Embedding-v0
has been evaluated on multiple tasks and datasets. Here are the detailed results:
Classification Tasks
Dataset |
Accuracy |
AP |
F1 |
MTEB AmazonCounterfactualClassification (en) |
75.76119402985074 |
39.03628777559392 |
69.85860402259618 |
MTEB AmazonPolarityClassification |
93.29920000000001 |
90.03479490717608 |
93.28554395248467 |
MTEB AmazonReviewsClassification (en) |
49.98799999999999 |
- |
49.46151232451642 |
MTEB Banking77Classification |
86.3961038961039 |
- |
86.3669961645295 |
Retrieval Tasks
Dataset |
MAP@1 |
MAP@10 |
MAP@100 |
MAP@1000 |
MRR@1 |
MRR@10 |
MRR@100 |
MRR@1000 |
NDCG@1 |
NDCG@10 |
NDCG@100 |
NDCG@1000 |
Precision@1 |
Precision@10 |
Precision@100 |
Precision@1000 |
Recall@1 |
Recall@10 |
Recall@100 |
Recall@1000 |
MTEB ArguAna |
31.935000000000002 |
48.791000000000004 |
49.619 |
49.623 |
32.93 |
49.158 |
50.00599999999999 |
50.01 |
31.935000000000002 |
57.593 |
60.841 |
60.924 |
31.935000000000002 |
8.549 |
0.9900000000000001 |
0.1 |
31.935000000000002 |
85.491 |
99.004 |
99.644 |
MTEB CQADupstackAndroidRetrieval |
31.013 |
42.681999999999995 |
44.24 |
44.372 |
38.196999999999996 |
48.604 |
49.315 |
49.363 |
38.196999999999996 |
49.344 |
54.662 |
56.665 |
38.196999999999996 |
9.571 |
1.542 |
0.202 |
31.013 |
61.934999999999995 |
83.923 |
96.601 |
MTEB CQADupstackEnglishRetrieval |
29.84 |
39.335 |
40.647 |
40.778 |
36.815 |
45.175 |
45.907 |
45.946999999999996 |
36.815 |
44.783 |
49.551 |
51.612 |
36.815 |
8.363 |
1.385 |
0.186 |
29.84 |
54.164 |
74.36 |
87.484 |
MTEB CQADupstackGamingRetrieval |
39.231 |
51.44800000000001 |
52.574 |
52.629999999999995 |
44.89 |
54.803000000000004 |
55.556000000000004 |
55.584 |
44.89 |
57.228 |
61.57 |
62.613 |
44.89 |
9.266 |
1.2309999999999999 |
0.136 |
39.231 |
70.82000000000001 |
89.446 |
96.665 |
MTEB CQADupstackGisRetrieval |
25.296000000000003 |
34.021 |
35.158 |
35.233 |
27.232 |
36.103 |
37.076 |
37.135 |
27.232 |
38.878 |
44.284 |
46.268 |
27.232 |
5.921 |
0.907 |
0.11199999999999999 |
25.296000000000003 |
51.708 |
76.36699999999999 |
91.306 |
MTEB CQADupstackMathematicaRetrieval |
16.24 |
24.696 |
25.945 |
26.069 |
20.149 |
29.584 |
30.548 |
30.618000000000002 |
20.149 |
30.029 |
35.812 |
38.755 |
20.149 |
4.73 |
0.74 |
0.08 |
16.24 |
37.24 |
65.63 |
86.78 |
Clustering Tasks
Dataset |
V-Measure |
MTEB ArxivClusteringP2P |
47.78438534940855 |
MTEB ArxivClusteringS2S |
40.12916178519471 |
MTEB BiorxivClusteringP2P |
39.40291404289857 |
MTEB BiorxivClusteringS2S |
35.102356817746816 |
Reranking Task
Dataset |
MAP |
MRR |
MTEB AskUbuntuDupQuestions |
62.125361608299855 |
74.92525172580574 |
STS Task
Dataset |
Cosine Similarity Pearson |
Cosine Similarity Spearman |
Euclidean Pearson |
Euclidean Spearman |
Manhattan Pearson |
Manhattan Spearman |
MTEB BIOSSES |
88.64322910336641 |
87.20138453306345 |
87.08547818178234 |
87.17066094143931 |
87.30053110771618 |
86.86824441211934 |
📄 License
This project is licensed under the MIT License.